Modulhandbuch
für den kooperativen Masterstudiengang
M. Sc. Applied Physics

10. März 2020

Hochschule Koblenz
RheinAhrCampus
Fachbereich Mathematik und Technik
und
Universität Koblenz-Landau
Fachbereich 3: Mathematik/Naturwissenschaften
Inhaltsverzeichnis

1 Einleitung 4

2 Pflichtmodule 5

2.1 Höhere Mathematik 5
2.2 Atomphysik 6
2.3 Molekülphysik 7
2.4 Kern- und Teilchenphysik 8
2.5 Solid State Physics (03PH2501) 9
2.6 Theoretische Physik 1: Theoretische Mechanik, Elektrodynamik (03PH1109) 10
2.7 Theoretische Physik 2: Quantentheorie, statistische Physik und Thermodynamik (03PH2110) 11
2.8 Masterarbeit (MA) 12
2.9 Kolloquium 13

3 Schwerpunktmodule: Lasertechnik und Optische Technologien 14

3.1 Moderne Verfahren in der Mikroskopie 14
3.2 Astronomie 15
3.3 Computervisualistik 16
3.4 Physikalische Grundlagen von Sensoren 17
3.5 Röntgenphysik 18
3.6 Röntgenoptik 19
3.7 Nichtlineare Optik I: Grundlagen 20
3.8 Nichtlineare Optik II: Ultrakurze Laserpulse 21
3.9 Laseroptische Verfahren zur hochauflösenden Bildgebung 22
3.10 Laserspektroskopie 23
3.11 Moderne Optikentwicklung 24
3.12 Lasermedizin und biomedizinische Optik 25

4 Schwerpunktmodule: Material- und Grenzflächenphysik 26

4.1 Modellieren und Simulieren für Naturwissenschaftler (03MA2401) 26
4.2 Surface Science (03PH2503) 27
4.3 Applied Theoretical Physics (03PH2504) 28
4.4 Polymer Science (03PH2505) 29
4.5 Aktuelle Fragen der Materialanalyse 30
4.6 Moderne Verfahren in der Mikroskopie 31
4.7 Röntgenphysik 32
4.8 Laserspektroskopie 33
4.9 Kernspintomographie 34
4.10 Computertomographie (inkl. Nuklearmedizin und Röntgendiagnostik) 35

5 Schwerpunktmodule: Medizintechnik 36

5.1 Moderne Verfahren in der Mikroskopie 36
5.2 Medizinische Bildverarbeitung 1 (04CV2002) 37
5.3 Computervisualistik 38
5.4 Physikalische Grundlagen von Sensoren 39
5.5 Dosimetrie ionisierender Strahlung und Strahlenschutz in Medizin und Technik 40
5.6 Ultraschallbildgebung 41
5.7 Röntgenphysik 42
5.8 Laseroptische Verfahren zur hochauflösenden Bildgebung 43
5.9 Lasermedizin und biomedizinische Optik 44
5.10 Kernspintomographie ... 45
5.11 Computertomographie (inkl. Nuklearmedizin und Röntgendiagnostik) ... 46
5.12 Physik und Technik der Strahlentherapie 47
5.13 Einführung in die Sportmedizin 1 (03SP2901) 48
5.14 Einführung in die Sportmedizin 2 (03SP2902) 49
5.15 Analyse funktioneller und struktureller MRT-Bildgebungsdaten .. 50

6 Wahlmodule .. 51

6.1 Medizinische Bild- und Signalverarbeitung 51
6.2 Mustererkennung .. 52
6.3 Auslandslehrveranstaltung .. 53
6.4 Parallel Computing .. 54
6.5 Kontinuumsmechanik .. 55
6.6 Spezielle Relativitätstheorie .. 56
6.7 Künstliche Intelligenz ... 57
6.8 Fortgeschrittene Quantenmechanik 58
6.9 Quantenfeldtheorie ... 59
6.10 Applied Differential Equations (03MA2501) 60
6.11 Optimization (03MA2502) .. 61
6.12 Bildverarbeitung 1 (04CV1001) 62
6.13 Bildverarbeitung 2 (04CV1002) 63
6.14 Entrepreneurship, Technologie- und Innovationsmanagement (04IM2009) 64
6.15 Numerische Methoden der Angewandten Physik 65
6.16 Wissenschaftliches Rechnen und Simulation 66
6.17 Wissenschaftliche Datenanalyse 67
6.18 Statistik für Naturwissenschaftler und Ingenieure 68
6.19 Mikrocontrollerotechnik .. 69
6.20 Computer Aided Design ... 70
6.21 Mesh Processing (04CV2025) 71
6.22 Forschungsprojekt (Research Project) 72
6.23 Moderne Objektorientierte Programmierung 73
6.24 Methoden der Fernerkundung 74
6.25 New Venture Technology Project 75
6.26 Biomechanische Simulation ... 77
1 Einleitung

Im Folgenden sind alle Module und deren Veranstaltungen zusammen mit den Leistungspunkten (LP) nach dem ECTS des jeweiligen Moduls für den Masterstudiumsgang zusammengestellt. Die Leistungspunkte pro Modul umfassen die Zeiten für Workload, Kontaktzeit und Selbststudium nach der Formel $1 \text{ LP} = 30 \text{ h}$.

Da die Arbeitsbelastung der Studierenden in Bezug auf Vor- und Nachbereitung stark zwischen den einzelnen Veranstaltungsformen variiert, ist kein einheitlicher Zuordnungs faktor von Leistungspunkten und Lehrzeiten (SWS) vorhanden. Die angegebenen Kontaktzeiten in Zeitstunden resultiert aus der Abschätzung $1 \text{ SWS} = 15 \text{ h}$.

Vorlesungen und Übungen werden getrennt ausgewiesen. Sollte es sich um Vorlesungen mit integrierten Übungen handeln, so ist dies an dem vorhandenen, identischen Kürzel für die Lernformen zu erkennen. Das Verhältnis zwischen dem Aufwand für die Vorlesung und für die Übung stellt in dem Fall einen Richtwert dar und kann in der Praxis davon abweichen.

Für den Masterstudiengang stehen 24 SWS in Pflichtmodulen und durchschnittlich 31 SWS in SchwerpunktmODULEN und Wahlmodulen insgesamt 90 LP gegenüber. Dazu kommen 30 LP für die Masterarbeit und das Kolloquium.

Die Lehre findet am Campus Koblenz der Universität Koblenz-Landau und dem RheinAhrCampus der Hochschule Koblenz statt. In jedem Modul ist der Lehrort angegeben.

Die Masterarbeit muss im Schwerpunkt geschrieben werden, der Schwerpunkt umfasst mindestens Lehrveranstaltungen im Umfang von 30 LP. Mindestens 10 LP müssen außerhalb des gewählten Schwerpunktes und der Pflichtmodule absolviert werden.

Die Gewichtung eines Moduls entspricht der Anzahl der Leistungspunkte des Moduls im Verhältnis zur Gesamtzahl der im Studium eng zu erwerbenden Leistungspunkten.

Alle Module sind auf die Dauer eines Fachsemesters begrenzt.

Die für einige Module erforderliche Laserschutzbelehrung wird jedes Semester zu Beginn der Vorlesungszeit durchgeführt.

Es werden folgende Abkürzungen verwendet:

LP: Leistungspunkt
ECTS: European Credit Transfer System
Gr.-größe: Gruppengröße
Kont.-zeit: Kontaktzeit
PL: Prüfungsleistung
SL: Studienleistung
SWS: Semesterwochenstunde
h: Zeitstunde
RAC: RheinAhrCampus der Hochschule Koblenz in Remagen
CamKob: Campus Koblenz der Universität Koblenz-Landau

Die Modulnamen sind farbig dargestellt. Anhand der Farbe lässt sich schnell ablesen, wann bzw. wie oft ein Modul angeboten wird:

blau: im Wintersemester
grün: im Sommersemester
schwarz: jedes Semester
magenta: jedes dritte Semester
grau: nach Bedarf und Möglichkeit
2 Pflichtmodule

2.1 Höhere Mathematik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 oder 2 Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>–</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>105</td>
<td>–</td>
<td>3,5</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Schmidt
Sprache: Deutsch
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine
Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Inhalt

Spektraltheorie: Eigenwerte und Eigenvektoren, Orthogonalprojektionen, Skalarprodukte.
Numerische Lineare Algebra: QR- und Singulärwertzerlegungen.
Approximation und Interpolation: Lagrange-Interpolation, Splines, lineare und nichtlineare Ausgleichsprobleme.
Stochastik: Deskriptive Statistik, Zufallsvariablen, Verteilungsmodelle, einfache Schätzer.
2.2 Atomphysik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 oder 2 Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
<td></td>
</tr>
<tr>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>45</td>
<td>15</td>
<td>1,5</td>
<td>SL: Testate</td>
<td></td>
</tr>
<tr>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>75</td>
<td>–</td>
<td>2,5</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Kohl
Sprache: Deutsch
Turnus: Wintersemester
Standort: RAC
Lehrende: Kohl, Ankerhold
Zwingende Voraussetzungen: Teilnahme an der Laserschutzbelehrung
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Praktikumsinhalt

Zeeman-Effekt, Atomemissionsspektroskopie, Elektronenspin-Resonanzspektroskopie, Rastertunnelmikroskopie, Messung der Hyperfeinstrukturaufspaltung

Literatur

Script zur Vorlesung
H. Haken, H.C. Wolf, Atom- und Quantenphysik: Einführung in die experimentellen und theoretischen Grundlagen, Springer Verlag
W. Demtröder, Experimentalphysik 3 – Atome, Moleküle und Festkörper, Springer Verlag
W. Demtröder, Laserspektroskopie – Grundlagen und Techniken, Springer Verlag
2.3 **Molekülphysik**

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td>–</td>
<td>Übung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>90</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>60</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Neeb

Sprache: Deutsch

Turnus: Sommersemester

Standort: RAC

Lehrende: Neeb, Holz

Zwingende Voraussetzungen: keine

Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Die Studierenden gewinnen einen erweiterten Einblick in die Quantenmechanik sowie deren Anwendung zur Lösung physikalischer Probleme in der Molekülphysik und Quantenchemie. Sie kennen die mathematischen Begriffe, Methoden sowie Formalismen und können diese zur Lösung physikalischer Problemstellungen anwenden. Sie erlangen Kompetenzen bei der numerischen Lösungen physikalischer Problemstellungen aus dem Bereich Molekülphysik.

Inhalt

Literatur

H. Haken, H.C. Wolf, Atom- und Quantenphysik: Einführung in die theoretischen und experimentellen Grundlagen, Springer Verlag

W. Demtröder, Experimentalphysik 3 – Atome, Moleküle und Festkörper, Springer Verlag

W. Demtröder, Laserspektroskopie – Grundlagen und Techniken, Springer Verlag
2.4 Kern- und Teilchenphysik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 oder 3 Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>45 (3 SWS)</td>
<td>45</td>
<td>1,5</td>
<td>PL: Klausur, mündliche Prüfung oder Abgabeübungen mit mündlicher Nachbesprechung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>–</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>90</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>60</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>Modulbeauftragte(r):</td>
<td>Neeb</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sprache:</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Turnus:</td>
<td>Sommersemester</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lehrende:</td>
<td>Neeb</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Zwingende Voraussetzungen:</td>
<td>keine</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Inhaltliche Voraussetzungen:</td>
<td>keine</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Verwendbarkeit:</td>
<td>M. Sc. Applied Mathematics, M. Sc. Applied Physics</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Lernziele und Kompetenzen

Inhalt

Grundlegende Experimente und Modelle: Rutherford’sches Streuexperiment, Größe der Atomkerne, Quantenmechanische Streuung, nuklearer Formfaktor, Masse und Bindungsenergie der Kerne, Tröpfchenmodell des Atomkerns.
Wechselwirkung zwischen Nukleonen: Virtuelle Teilchen, Pionen-Austausch, Yukawa Modell.
Kernmodelle und Struktur der Kerne: Nullte Näherung (Kerne als Fermigas), Schalenmodell Kernspin und magnetisches Moment.
Radioaktive Zerfälle: Alpha-Zerfall, Tunneleffekt, Elektromagnetische Übergänge, Beta-Zerfall, schwache Wechselwirkung.
Anwendungen der Kernphysik: Kernspaltung, Kernfusion, Energieerzeugung in der Sonne, CNO-Zyklus, Anwendungen in der Medizin: Beschleuniger in der Tumortherapie, MRT.
2.5 **Solid State Physics (03PH2501)**

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 oder 3</td>
<td>Vorlesung</td>
<td>3525011</td>
<td>30</td>
<td>45 (3 SWS)</td>
<td>45</td>
<td>1,5</td>
<td>PL: Klausur oder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>3525012</td>
<td>20</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>SL: Regelmäßige</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Teilnahme</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>120</td>
<td>–</td>
<td>–</td>
<td>180</td>
<td>60</td>
<td>6</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Wehner
Sprache: Englisch
Turnus: Sommersemester
Standort: CamKob
Lehrende: Wehner
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

The students know basic ideas, fundamental experiments and methods of solid state physics. They understand macroscopic material properties on the basis of microscopic interactions. The students are able to describe different kinds of matter mathematically and can predict material properties, both electronic and thermal, in solids. They become familiar with the language of condensed matter and key theories and concepts. The students broaden their analytical and problem-solving skills. They are able to acquire, adapt and apply current research results.

Inhalt

Crystal structure; binding mechanisms; mechanical, thermal and electronic properties; semiconductors.
2.6 Theoretische Physik 1: Theoretische Mechanik, Elektrodynamik (03PH1109)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 oder 2</td>
<td>Vorlesung</td>
<td>3511091</td>
<td>36</td>
<td>45 (3 SWS)</td>
<td>45</td>
<td>1,5</td>
<td>PL: Klausur</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>3511092</td>
<td>36</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>SL: regelmäßige Teilnahme</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>–</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r):	Wehner
Turnus:	Sommersemester
Lehrende:	Zimmerschied
Zwingende Voraussetzungen:	keine
Inhaltliche Voraussetzungen:	keine
Verwendbarkeit:	M. Sc. Applied Physics

Sprache: Deutsch
Standort: CamKob

Lernziele und Kompetenzen

Die Studierenden lernen neben der Behandlung bekannter Einzelthemen eine übergeordnete Perspektive einzunehmen und lernen damit das Wesen von Physik zu verstehen. Sie erkennen die spezifische Kultur- und Zivilisationsbeitrag der Theoretischen Physik und können ihr gedankliches Arsenal an Arbeitsstrategien und Denkformen und ihre Kulturverflechtung an Beispielen zu verdeutlichen.

Inhalt

2.7 Theoretische Physik 2: Quantentheorie, statistische Physik und Thermodynamik (03PH2110)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr. Größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 oder 3</td>
<td>Vorlesung</td>
<td>3521101</td>
<td>36</td>
<td>45 (3 SWS)</td>
<td>45</td>
<td>1,5</td>
<td>PL: Klausur</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>3521102</td>
<td>36</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>SL: regelmäßige Teilnahme</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>–</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r):	Wehner	Sprache:	Deutsch
Turnus:	Wintersemester	Standort:	CamKob
Lehrende:	Zimmerschied		
Zwingende Voraussetzungen:	keine		
Inhaltliche Voraussetzungen:	Theoretische Physik 1 (03PH1109)		
Verwendbarkeit:	M. Sc. Applied Physics		

Lernziele und Kompetenzen

Inhalt

Querschnittsthemen: Approximationsverfahren der Theoretischen Physik, Variationsrechnung.
2.8 Masterarbeit (MA)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernform</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Projekt</td>
<td>–</td>
<td>k.A.</td>
<td>750</td>
<td>30</td>
<td>25</td>
<td>PL: Abschlussarbeit</td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>750</td>
<td>30</td>
<td>25</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Ankerhold
Turnus: jedes Semester
Lehrende: alle Prüfende im Sinne der PO
Zwingende Voraussetzungen: siehe Prüfungsordnung
Inhaltliche Voraussetzungen: keine
Verwendbarkeit: M. Sc. Applied Physics

Sprache: Deutsch oder Englisch
Standort: s. Bemerkung

Lernziele und Kompetenzen

Projekt

Selbstständige Bearbeitung einer wissenschaftlichen Frage unter fachlicher Anleitung.

Bemerkungen

Die Masterarbeit muss im Schwerpunkt geschrieben werden. Sie kann am RheinAhrCampus, am Campus Koblenz der Universität Koblenz-Landau, in einem Unternehmen oder einer wissenschaftlichen Institution durchgeführt werden. Weitere Rahmenbedingungen sind der Prüfungsordnung zu entnehmen.
2.9 Kolloquium

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Vortrag</td>
<td>–</td>
<td>k.A.</td>
<td>150</td>
<td>15</td>
<td>5</td>
<td>PL: benoteter Vortrag</td>
</tr>
</tbody>
</table>

Summe – – – 150 15 5 –

Modulbeauftragte(r): Ankerhold
Sprache: Deutsch oder Englisch

Turnus: jedes Semester
Standort: CamKob oder RAC

Lehrende: alle Prüfende im Sinne der PO

Zwingende Voraussetzungen: alle übrigen Module müssen erfolgreich abgeschlossen sein

Inhaltliche Voraussetzungen: keine

Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Inhalt

Präsentation und Diskussion der Masterarbeit.

Bemerkungen

Weitere Rahmenbedingungen sind der Prüfungsordnung zu entnehmen
3 Schwerpunktmodule: Lasertechnik und Optische Technologien

3.1 Moderne Verfahren in der Mikroskopie

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder Hausarbeit</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td>–</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>SL: Vortrag</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>105</td>
<td>–</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Hahn
Turnus: Wintersemester
Lehrende: Hahn
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine
Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Die Studierenden kennen die modernen Mikroskopieverfahren, ihre Begrenzungen und typische Anwendungen. Sie sind in der Lage zu entscheiden, welches Verfahren für welche Fragestellung angemessen ist und wissen, welche physikalischen Wechselwirkungen hinter der jeweiligen Methode stecken. Sie verstehen wissenschaftliche Veröffentlichungen, die diese Verfahren verwenden, und können die Ergebnisse kritisch beurteilen.

Inhalt

Lichtmikroskopie, Rasterelektronenmikroskopie (REM), Transmissionselektronenmikroskopie (TEM), Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM).
3.2 Astronomie

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td>–</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>90</td>
<td>45</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td></td>
<td>15</td>
<td>–</td>
<td>0,5</td>
<td></td>
</tr>
</tbody>
</table>

Summe: – – – 150 90 5 –

<table>
<thead>
<tr>
<th>Modulbeauftragte(r):</th>
<th>N.N.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Lehrende:</td>
<td>N.N.</td>
</tr>
<tr>
<td>Zwingende Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Inhaltliche Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Verwendbarkeit:</td>
<td>M. Sc. Applied Physics</td>
</tr>
</tbody>
</table>

Sprache: Deutsch
Standort: RAC

Lernziele und Kompetenzen

Inhalt

Grundlagen der beobachtenden Astronomie, Grundlagen der Astrophysik, Beobachtungsinstrumente und -verfahren, Grundlagen der Himmelsmechanik und der Bahnberechnung.

Bemerkungen

Das Praktikum kann durch ein Projekt ersetzt werden.

Literatur

A. Weigert, Astronomie und Astrophysik, Wiley-VCH
Neil F. Comins, Astronomie, Spektrum
M. E. Bakich, The Cambridge Encyclopedia of Amateur Astronomy
3.3 Computervisualistik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>45</td>
<td>15</td>
<td>1.5</td>
<td>SL: Testate</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>75</td>
<td>–</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUMME</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragter(r): Hartmann
Sprache: Deutsch
Lehrende: Hartmann
Turnus: Sommersemester
Standort: RAC
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

3.4 Physikalische Grundlagen von Sensoren

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>45</td>
<td>15</td>
<td>1,5</td>
<td>SL: Testate</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>75</td>
<td>–</td>
<td>2,5</td>
<td>–</td>
</tr>
</tbody>
</table>

Summe
- –
- –
- 150
- 45
- 5
- –

Modulbeauftragte(r): Prokic
Turnus: Sommersemester
Lehrende: Prokic
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine
Verwendbarkeit: M. Sc. Applied Mathematics, M. Sc. Applied Physics

Sprache: Deutsch
Standort: RAC

Lernziele und Kompetenzen

Die Studierenden verfügen nach erfolgreichem Abschluss des Moduls über vertiefte Grundlagenkenntnisse zu physikalischen Effekten der Sensorennutzung und Fertigkeiten im Umgang mit Technik und Funktion moderner Sensoren.

Inhalt

Sensoren spielen für moderne Ingenieurwissenschaften eine sehr bedeutsame Rolle. Der Kurs bietet einen Überblick über die Sensoren physikalischer, chemischer, elektromagnetischer sowie medizinischer Größen. Es werden die verschiedene Einsatzbereiche der Sensoren vorgestellt: Sensoren für die Erfassung geometrischer Messgrößen, thermische Sensoren, zeitbasierte Größen, Sensoren für elektrische und magnetische Messgrößen, optische und akustische Messgrößen, sowie Sensoren für Messung von ionisierender Strahlung.

Praktikumsinhalt

Im Praktikum wird den Studenten ein anwendungsorientierter Umgang mit industriell standardisierten Sensoren vermittelt.
3.5 Röntgenphysik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>SL: Vortrag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td>90</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summe: – – – 150 60 5 –

Modulbeauftragte(r): Wilhein
Sprache: Deutsch
Standort: RAC

Lernziele und Kompetenzen

Die Studierenden lernen, sich in ein neues wissenschaftliches Themengebiet einzuarbeiten. Sie beherrschen die atomphysikalischen Grundlagen der Röntgenstrahlung und können sie anwenden, sie können die Wechselwirkung von Röntgenstrahlung mit Materie erklären, erwerben ein Verständnis der Physik von Röntgenquellen und Detektoren und können selbst erarbeitetes Wissen umfassend und verständlich präsentieren (Seminar).

Inhalt

Literatur

Haken, Wolf: Atom- und Quantenphysik, Springer-Lehrbuch
Attwood, Soft X-Rays and Extreme Ultraviolet Radiation, Cambridge University Press
3.6 Röntgenoptik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>SL: Vortrag oder Hausarbeit</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>90</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>60</td>
<td>5</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Wilhein
Sprache: Deutsch
Turnus: Wintersemester
Standort: RAC
Lehrende: Wilhein
Zwingende Voraussetzungen: Bestandenes Modul Röntgenphysik
Inhaltliche Voraussetzungen: Inhalte des Moduls Röntgenphysik

Lernziele und Kompetenzen

Die Studierenden lernen, sich in ein neues wissenschaftliches Themengebiet einarbeiten. Sie können röntgenoptische Komponenten / Systeme für Spektroskopie und Bildgebung analysieren und konzipieren. Sie können selbst erarbeitetes Wissen umfassend und verständlich präsentieren (Seminar).

Inhalt

Literatur

Attwood, Soft X-Rays and Extreme Ultraviolet Radiation, Cambridge University Press
3.7 Nichtlineare Optik I: Grundlagen

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>SL: Vortrag oder Hausarbeit</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>90</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
</tbody>
</table>

| Summe | – | – | – | 150 | 60 | 5 | – |

Modulbeauftragte(r): Wilhein
Sprache: Deutsch
Turnus: Wintersemester
Standort: RAC
Lehrende: Wilhein
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Die Studierenden lernen, sich in ein neues wissenschaftliches Themengebiet einzuarbeiten. Sie können Ursachen für nichtlineare Effekte erkennen und beschreiben und erweitern ihre fachübergreifende Kompetenz durch die schriftliche Ausarbeitung von komplexen Themen sowie die Präsentation von erarbeitetem Wissen (Seminar).

Inhalt

Literatur

Meschede: Optik, Licht und Laser, Vieweg und Teubner
3.8 Nichtlineare Optik II: Ultrakurze Laserpulse

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 oder 3 Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur</td>
<td></td>
</tr>
<tr>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>30</td>
<td>30</td>
<td>1</td>
<td>SL: Testate</td>
<td></td>
</tr>
<tr>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>90</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>60</td>
<td>5</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Wilhein
Sprache: Deutsch
Turnus: Sommersemester
Standort: RAC
Lehrende: Wilhein
Zwingende Voraussetzungen: Bestandenes Modul Nichtlineare Optik I: Grundlagen, Teilnahme an der Laserschutzbelehrung
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Kristalloptik, elektro-optische und magneto-optische Effekte, Q-Switch, Modenkopplung, Nanosekundensaser, Femtosekundenlaser, Kerr-Linsen-Effekt, Chirped Pulse Amplification, Selbstphasenmodulation, laserinduzierte Plasmen.

Literatur

Rulliere: Femtosecond Laser Pulses, Springer Verlag
3.9 Laseroptische Verfahren zur hochauflösenden Bildgebung

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>45</td>
<td>15</td>
<td>1,5</td>
<td>SL: Testate</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>75</td>
<td>–</td>
<td>2,5</td>
<td>–</td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Ankerhold
Sprache: Deutsch

Turnus: Wintersemester

Lehrende: Ankerhold

Zwingende Voraussetzungen: Teilnahme an der Laserschutzbelehrung

Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Praktikumsinhalt

Ein im Team von 2-3 Studierenden zu bearbeitendes Kleinprojekt zur Optischen Kohärenztomographie mit einem gemeinsamen Versuchsprotokoll.

Literatur

Script zur Vorlesung
J. Eichler, H.J. Eichler, Laser, Springer Verlag
E. Hecht, Optik, Oldenbourg Verlag
W. Lauterborn, T. Kurz, M. Wiesenfeldt, Kohärente Optik: Grundlagen für Physiker und Ingenieure, Springer Verlag
J. Eichler, T. Seiler, Lasertechnik in der Medizin, Springer Verlag

22
3.10 Laserspektroskopie

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>45</td>
<td>15</td>
<td>1,5</td>
<td>SL: Testate</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>75</td>
<td></td>
<td>2,5</td>
<td>–</td>
</tr>
</tbody>
</table>

| Summe | – | – | 150 | 45 | 5 |

Modulbeauftragte(r): Ankerhold
Sprache: Deutsch
Turnus: Sommersemester
Standort: RAC

Zwingende Voraussetzungen: Teilnahme an der Laserschutzbelehrung
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Praktikumsinhalt

Ein im Team von 2-3 Studierenden zu bearbeitendes Kleinprojekt mit aktueller Fragestellung und einem gemeinsamen Ergebnisprotokoll.

Literatur

Script zur Vorlesung
W. Demtröder, Laserspektroskopie – Grundlagen und Techniken, Springer Verlag
S. Svanberg, Atomic and Molecular Spectroscopy – Basic Aspects and Practical Applications, Springer-Verlag
H. Haken, H.C. Wolf, Atom- und Quantenphysik: Einführung in die theoretischen und experimentellen Grundlagen, Springer Verlag
3.11 Moderne Optikentwicklung

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>60 (4 SWS)</td>
<td>60</td>
<td>2</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>90</td>
<td>–</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>60</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Kohns
Turnus: Wintersemester
Sprache: Deutsch
Zwingende Voraussetzungen: keine
Standort: RAC
Lehrende: Kohns
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Ggf: Kurze Einführung in die Software OSLO oder eine andere geeignete Simulationssoftware.
3.12 Lasermedizin und biomedizinische Optik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>60</td>
<td>15</td>
<td>2</td>
<td>SL: Testate</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>60</td>
<td>–</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Bongartz
Turnus: Sommersemester
Lehrende: Bongartz, Kohl
Zwingende Voraussetzungen: Teilnahme an der Laserschutzbelehrung
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Photonen-Gewebe Wechselwirkung, Modelle zur Lichtausbreitung in streuenden und absorbierenden Medien, optische Diagnostik und Therapie, spektroskopische und interferometrische Methoden der Lasermedizin.
4 Schwerpunktmodule: Material- und Grenzflächenphysik

4.1 Modellieren und Simulieren für Naturwissenschaftler (03MA2401)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>3615011</td>
<td>30</td>
<td>60 (4 SWS)</td>
<td>60</td>
<td>2</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>120</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulbeauftragte(r):</th>
<th>Götz, Ruzika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Lehrende:</td>
<td>Götz, Ruzika</td>
</tr>
<tr>
<td>Zwingende Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Inhaltliche Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>

Sprache: Deutsch
Standort: CamKob

Lernziele und Kompetenzen

Die Studierenden sind in der Lage, selbständig Teilaspekte exemplarischer Anwendungsprobleme aus Industrie und Wirtschaft zu behandeln; dies betrifft insbesondere die Wahl des mathematischen Modells, die Wahl geeigneter Lösungsverfahren sowie die Interpretation der Ergebnisse. Durch die Teilnahme an der Vorlesung haben die Studierenden die Grundprinzipien der mathematischen Modellierung gelernt.

Inhalt

4.2 **Surface Science (03PH2503)**

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung mit integ. Übung Selbststudium</td>
<td>3525031, 3525032</td>
<td>30</td>
<td>60 (4 SWS)</td>
<td>60</td>
<td>2</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
</tbody>
</table>

| Summe | – | – | 180 | 60 | 6 | – |

Modulbeauftragte(r): Wehner
Sprache: Englisch
Turnus: Wintersemester
Standort: CamKob
Lehrende: Wehner
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: experimental physics (mechanics, thermodynamics, electrodynamics, optics, quantum mechanics, atomic physics, molecular physics)

Lernziele und Kompetenzen

Vacuum Technology (3525031): The students know the physical basis of vacuum technology and can explain the basic concepts and ideas of vacuum. They develop an understanding of the countervailing effects relevant in the realization of vacuum and are able to evaluate technical problems on the basis of the resulting limitations. They can transfer their knowledge to technical solutions and develop own experimental schemes.

Surface Science (3525032): The students know the basics of reaction kinetics and other phenomena on surfaces, and can explain the particular characteristics of surfaces and discuss related problems. They are able to describe and analyze common detection techniques and evaluate their limitations, can evaluate existing experimental setups, and are able to transfer their knowledge to experiments for specific tasks and develop own experimental schemes.

Inhalt

Vacuum Technology (3525031): equations of state, motion in diluted gases, transport, flow, conductance and pumping speed, calculating conductance, design of vacuum systems, pumps, measuring pressure, materials for HV and UHV, flange systems and components.

Surface Science (3525032): surface structure, diffraction on surfaces, microscopy on surfaces, scattering methods, chemical surface analysis, electronic states on surfaces, vibrations on surfaces, gas adsorption on surfaces, surface reactions.
4.3 Applied Theoretical Physics (03PH2504)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 oder 3</td>
<td>Vorlesung mit integr. Übung Selbststudium</td>
<td>3525041, 3525042</td>
<td>30</td>
<td>60 (4 SWS)</td>
<td>60</td>
<td>2</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td>-</td>
<td>-</td>
<td>180</td>
<td>60</td>
<td>6</td>
<td>-</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Wehner
Sprache: Englisch
Turnus: Sommersemester
Standort: CamKob
Lehrende: Wehner
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: Fundamental knowledge in theoretical physics.

Lernziele und Kompetenzen

The students can name various fields, where modern concepts of theoretical physics are important for the description of real world problems in nature and technology. They know the fundamental definitions, theorems and methods related to the application of theoretical physics. They can analyze the relation between parameters in given systems, apply mathematical methods to solve problems in these fields, and evaluate suggested solutions and develop own solving schemes.

Inhalt

Modern concepts in theoretical physics, reaction-diffusion-systems, nonlinear physics, nonequilibrium thermodynamics, applications of theoretical physics in nature.
4.4 Polymer Science (03PH2505)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung mit integ. Übung Selbststudium</td>
<td>3525051, 3525052</td>
<td>30 120</td>
<td>60 (4 SWS) 60</td>
<td>60 2</td>
<td>PL: Klausur oder mündliche Prüfung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>180</td>
<td>60 6</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Rathgeber
Sprache: Englisch

Turnus: Sommersemester
Standort: CamKob

Lehrende: Rathgeber

Zwingende Voraussetzungen: keine

Inhaltliche Voraussetzungen: experimental physics (mechanics, thermodynamics, electrodynamics, optics, quantum mechanics, atomic physics, molecular physics)

Lernziele und Kompetenzen

Polymer Physics (3525051): The students can independently explain basic models describing the properties of different types of polymers and in different states, are able to understand how the peculiarities of the polymer structure such as connectivity affects their physical properties and of which relevance these are for applications, develop on the basis of the covered basic concepts their own solving schemes, and are able to transfer the discussed basic concepts to actual, scientific topics in polymer science.

Characterization methods in Polymer Science (3525052): The students can independently explain the characterization method covered in this course, can identify for the most important physical properties of polymer materials (Course 1) the correct characterization methods, are aware of the technical realization and of the application potential of the different methods. They can give an overview over representative results for typical polymer systems, develop strategies for data analysis, presentation and interpretation, and are able to transfer the discussed basic concepts to actual, scientific topics in polymer science.

Inhalt

Basic Concepts in Polymer Physics: Synthesis and molecular weight distributions, Chain models, Polymer solutions, polymer blends, block copolymers, Semicrystalline state, Polymer dynamics and viscoelasticity, Networks, Glassy state.

Polymer Characterization: Determination of molecular weights, Thermal characterization, Mechanical testing, Dielectric spectroscopy and electrical characterization, Scattering methods, Microscopy.
4.5 Aktuelle Fragen der Materialanalyse

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td>–</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>SL: Vortrag</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>105</td>
<td>–</td>
<td>3,5</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Hahn
Turnus: Sommersemester
Sprache: Deutsch
Lehrende: Hahn
Standort: RAC
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine
Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Die Studierenden lernen wichtige Messverfahren für materialwissenschaftliche Fragestellungen kennen. Sie beherrschen deren physikalischen Grundlagen. Sie sind in der Lage, diese selbstständig auszuwählen und einzusetzen.

Inhalt

Messverfahren der Materialanalyse; physikalische Grundlagen des Messprozesses; apparative Beschränkungen und Fehlerquellen; typische Anwendungsbeispiele und Einsatzgebiete.
4.6 Moderne Verfahren in der Mikroskopie

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hausarbeit</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td>–</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>SL: Vortrag</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>105</td>
<td>–</td>
<td>3,5</td>
<td></td>
</tr>
</tbody>
</table>

| Summe | – | – | – | 150 | 45 | 5 | – |

Modulbeauftragte(r): Hahn
Sprache: Deutsch
Turnus: Wintersemester
Standort: RAC
Lehrende: Hahn
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine
Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Die Studierenden kennen die modernen Mikroskopieverfahren, ihre Begrenzungen und typische Anwendungen. Sie sind in der Lage zu entscheiden, welches Verfahren für welche Fragestellung angemessen ist und wissen, welche physikalischen Wechselwirkungen hinter der jeweiligen Methode stecken. Sie verstehen wissenschaftliche Veröffentlichungen, die diese Verfahren verwenden, und können die Ergebnisse kritisch beurteilen.

Inhalt

Lichtmikroskopie, Rasterelektronenmikroskopie (REM), Transmissionselektronenmikroskopie (TEM), Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM).
4.7 Röntgenphysik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>SL: Vortrag</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>90</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
</tbody>
</table>

Summe – – – 150 60 5 –

Modulbeauftragte(r): Wilhelm
Sprache: Deutsch
Turnus: Sommersemester
Standort: RAC
Lehrende: Wilhelm
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Die Studierenden lernen, sich in ein neues wissenschaftliches Themengebiet einzuarbeiten. Sie beherrschen die atomphysikalischen Grundlagen der Röntgenstrahlung und können sie anwenden, sie können die Wechselwirkung von Röntgenstrahlung mit Materie erklären, erwerben ein Verständnis der Physik von Röntgenquellen und Detektoren und können selbst erarbeitetes Wissen umfassend und verständlich präsentieren (Seminar).

Inhalt

Literatur

Haken, Wolf: Atom- und Quantenphysik, Springer-Lehrbuch
Attwood, Soft X-Rays and Extreme Ultraviolet Radiation, Cambridge University Press
4.8 Laserspektroskopie

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>45</td>
<td>15</td>
<td>1.5</td>
<td>SL: Testate</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>75</td>
<td>–</td>
<td>2.5</td>
<td>–</td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Ankerhold
Sprache: Deutsch

Turnus: Sommersemester
Standort: RAC

Lehrende: Ankerhold

Zwingende Voraussetzungen: Teilnahme an der Laserschutzbelehrung

Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Praktikumsinhalt

Ein im Team von 2-3 Studierenden zu bearbeitendes Kleinprojekt mit aktueller Fragestellung und einem gemeinsamen Ergebnisprotokoll.

Literatur

Script zur Vorlesung
W. Demtröder, Laserspektroskopie – Grundlagen und Techniken, Springer Verlag
S. Svanberg, Atomic and Molecular Spectroscopy – Basic Aspects and Practical Applications, Springer-Verlag
H. Haken, H.C. Wolf, Atom- und Quantenphysik: Einführung in die theoretischen und experimentellen Grundlagen, Springer Verlag
4.9 Kernspintomographie

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>45</td>
<td>15</td>
<td>1,5</td>
<td>SL: Testate</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>75</td>
<td>2,5</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

| Summe | – | – | – | 150 | 45 | 5 | – |

Modulbeauftragte(r): Holz
Sprache: Deutsch
Turnus: Wintersemester
Standort: RAC
Lehrende: Holz
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

4.10 Computertomographie (inkl. Nuklearmedizin und Röntgendiagnostik)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>60</td>
<td>15</td>
<td>2</td>
<td>SL: Teste</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>60</td>
<td>–</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Prokic
Sprache: Deutsch
Turnus: Sommersemester
Standort: RAC
Lehrende: Prokic
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Unterschiedliche Detektortypen und verschiedene Ansätze der ortsaufgelosten Photonendetektion für die Nuklearmedizinische Bildgebung (Gamma-Kammer, PET, SPECT) und für die Röntgenbildgebung; Physik und Technik der Gamma-Kammer, Single-Photon-Emissions-Computertomografie (SPECT), Positronen-Emissions-Tomographie (PET); Rekonstruktions- und Korrekturverfahren von PET und SPECT; Physik und Technik der Röntgenbildgebung; Computertomographie: Bildrekonstruktion für die Fächerstrahlgeometrie; Spiral-CT; Dualenergie-CT; Prinzip und Zweck von Qualitätskontrollen an nuklearmedizinischen Bildgebungsgeräten und an Geräten für die Röntgenbildgebung; multimodale Geräte (z.B. SPECT/CT, PET/CT) charakterisieren und deren Vor- sowie Nachteile benennen und einschätzen; die wichtigsten klinischen und präklinischen Anwendungen der nuklearmedizinischen Bildgebung, der Computertomographie und der Röntgendiagnostik; Methoden und Verfahren zur Dosimetrie für nuklearmedizinische Therapie und Diagnostik; Methoden und Verfahren zur Dosimetrie und Qualitätssicherung für die Röntgenbildgebung und Computertomographie; die gesetzlichen und methodischen Grundlagen des Strahlenschutzes für die Bereiche der Röntgendiagnostik, Computertomographie und Nuklearmedizin.
5 Schwerpunktmodule: Medizintechnik

5.1 Moderne Verfahren in der Mikroskopie

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder Hausarbeit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>SL: Vortrag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td>105</td>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Hahn

Sprache: Deutsch

Turnus: Wintersemester

Standort: RAC

Lehrende: Hahn

Zwingende Voraussetzungen: keine

Inhaltliche Voraussetzungen: keine

Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Die Studierenden kennen die modernen Mikroskopieverfahren, ihre Begrenzungen und typische Anwendungen. Sie sind in der Lage zu entscheiden, welches Verfahren für welche Fragestellung angemessen ist und wissen, welche physikalischen Wechselwirkungen hinter der jeweiligen Methode stecken. Sie verstehen wissenschaftliche Veröffentlichungen, die diese Verfahren verwenden, und können die Ergebnisse kritisch beurteilen.

Inhalt

Lichtmikroskopie, Rasterelektronenmikroskopie (REM), Transmissionselektronenmikroskopie (TEM), Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM).
5.2 Medizinische Bildverarbeitung 1 (04CV2002)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h (SWS)</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>04120021</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>04120022</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>0,5</td>
<td>SL: Regelmäßige Teilnahme</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>105</td>
<td>–</td>
<td>3,5</td>
<td>–</td>
</tr>
</tbody>
</table>

Summe – – – 150 45 5 –

Modulbeauftragte(r): Paulus
Sprache: Deutsch
Turnus: nach Bedarf und Möglichkeit
Standort: CamKob
Lehrende: Paulus, Lawonn
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine
Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Inhalt

Grundlagen: Bildmodalitäten, Historie, Gerätetypen, DICOM und PACS, Medizinische Grundbegriffe.
Vorverarbeitung geordnet nach Modalitäten: Röntgenbilder, Kamerakalibrierung, Endoskopische Bilder, Kernspin-Bilder, SPECT und PET.
Rekonstruktion: Fourier-Slice Theorem und gefilterte Rückprojektion, Algebraische Rekonstruktion, Probabilistische Rekonstruktionsverfahren.
Fusion und Registrierung: Maximale Transformation, Merkmalsbasierte Registrierung, Interpolationsverfahren.
Fallstudien in der Medizin: Radiologie, Innere Medizin.
5.3 Computervisualistik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>45</td>
<td>15</td>
<td>1,5</td>
<td>SL: Testate</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>75</td>
<td>–</td>
<td>2,5</td>
<td>–</td>
</tr>
</tbody>
</table>

Summe – – – 150 45 5 –

Modulbeauftragte(r): Hartmann
Turnus: Sommersemester
Lehrende: Hartmann
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

5.4 Physikalische Grundlagen von Sensoren

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>45</td>
<td>15</td>
<td>1,5</td>
<td>SL: Testate</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>75</td>
<td>–</td>
<td>2,5</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Prokic
Sprache: Deutsch
Turnus: Sommersemester
Standort: RAC
Lehrende: Prokic
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Die Studierenden verfügen nach erfolgreichem Abschluss des Moduls über vertiefte Grundlagenkenntnisse zu physikalischen Effekten der Sensorenennutzung und Fertigkeiten im Umgang mit Technik und Funktion moderner Sensoren.

Inhalt

Sensoren spielen für moderne Ingenieurwissenschaften eine sehr bedeutsame Rolle. Der Kurs bietet einen Überblick über die Sensoren physikalischer, chemischer, elektromagnetischer sowie medizinischer Größen. Es werden die verschiedene Einsatzbereiche der Sensoren vorgestellt: Sensoren für die Erfassung geometrischer Messgrößen, thermische Sensoren, zeitbasierte Größen, Sensoren für elektrische und magnetische Messgrößen, optische und akustische Messgrößen, sowie Sensoren für Messung von ionisierender Strahlung.

Praktikumsinhalte

Im Praktikum wird den Studenten ein anwendungsorientierter Umgang mit industriell standardisierten Sensoren vermittelt.
5.5 Dosimetrie ionisierender Strahlung und Strahlenschutz in Medizin und Technik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>45</td>
<td>15</td>
<td>1,5</td>
<td>SL: Testate</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>75</td>
<td>–</td>
<td>2,5</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Prokic
Sprache: Deutsch
Turnus: Wintersemester
Standort: RAC

Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Nach Abschluss des Moduls beherrschen die Studierenden: Kenntnisse der Eigenschaften ionisierender Strahlung, Radioaktivität, LET und RBW und der Wechselwirkung von Strahlung mit Materie; Grundlagen der Strahlenbiologie; Kenntnisse von Dosisgrößen und Einheiten und von physikalischen Grundlagen der Dosimetrie ionisierender Strahlung; Kenntnisse von Messverfahren sowie von nationalen und internationalen Dosimetrieprotokollen zur klinischen Dosimetrie; Theorie und Methodik zur Abschätzung eines Strahlenrisikos; Grundsätze und rechtliche Rahmenbedingungen des Strahlenschutzes; Kenntnisse zu Methoden des baulichen und organisatorischen Strahlenschutzes; Umsetzung des Strahlenschutzes von Patient und Personal in der Röntgen-Therapie und beim Umgang mit offenen und umschlossenen radioaktiven Substanzen; Kenntnisse der Strahlenschutzüberwachung und des Verhaltens bei Stör- und Unfällen; Durchführung von Qualitätssicherungsmaßnahmen gemäß Normen und Verfahren.

Inhalt

Bemerkungen

5.6 Ultraschallbildgebung

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td>–</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>SL: Vortrag</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>105</td>
<td>–</td>
<td>3,5</td>
<td>–</td>
</tr>
</tbody>
</table>

| Summe | – | – | – | 150 | 45 | 5 | – |

Modulbeauftragte(r): Carstens-Behrens
Sprache: Deutsch
Turnus: nach Bedarf und Möglichkeit
Standort: RAC

Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Vorlesung: Vertiefung der theoretischen Grundlagen zur Ausbreitung von Ultraschall, Simulation von Schallfeldern für verschiedene Schallwandlerkonfigurationen, Vertiefung der aktuell in der Forschung befindlichen Themen zur Ultraschallbildgebung, nichtmedizinische Anwendung der Ultraschallbildgebung, z. B. non destructive testing.
Seminar: Themen der aktuellen Forschung auf dem Gebiet der Ultraschallbildgebung, Nichtmedizinische Anwendungen der Ultraschallbildgebung

Literatur

5.7 Röntgenphysik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kонт.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>SL: Vortrag</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td>90</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

| Summe | – | – | – | 150 | 60 | 5 | – |

Modulbeauftragte(r): Wilhein
Sprache: Deutsch
Sprache: Deutsch
Standort: RAC
Lehrende: Wilhein
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Die Studierenden lernen, sich in ein neues wissenschaftliches Themengebiet einzuarbeiten. Sie beherrschen die atomphysikalischen Grundlagen der Röntgenstrahlung und können sie anwenden, sie können die Wechselwirkung von Röntgenstrahlung mit Materie erklären, erwerben ein Verständnis der Physik von Röntgenquellen und Detektoren und können selbst erarbeitetes Wissen umfassend und verständlich präsentieren (Seminar).

Inhalt

Literatur

Haken, Wolf: Atom- und Quantenphysik, Springer-Lehrbuch
Attwood, Soft X-Rays and Extreme Ultraviolet Radiation, Cambridge University Press
5.8 Laseroptische Verfahren zur hochauflösenden Bildgebung

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>45</td>
<td>15</td>
<td>1,5</td>
<td>SL: Testate</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>75</td>
<td>–</td>
<td>2,5</td>
<td>–</td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Ankerhold
Turnus: Wintersemester
Lehrende: Ankerhold
Zwingende Voraussetzungen: Teilnahme an der Laserschutzbelehrung
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Praktikumsinhalt

Ein im Team von 2-3 Studierenden zu bearbeitendes Kleinprojekt zur Optischen Kohärenztomographie mit einem gemeinsamen Versuchsprotokoll.

Literatur

Script zur Vorlesung
J. Eichler, H.J. Eichler, Laser, Springer Verlag
E. Hecht, Optik, Oldenbourg Verlag
W. Lauterborn, T. Kurz, M. Wiesenfeldt, Kohärente Optik: Grundlagen für Physiker und Ingenieure, Springer Verlag
J. Eichler, T. Seiler, Lasertechnik in der Medizin, Springer Verlag
5.9 Lasermedizin und biomedizinische Optik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>60</td>
<td>15</td>
<td>2</td>
<td>SL: Testate</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>60</td>
<td>–</td>
<td>2</td>
<td>–</td>
</tr>
</tbody>
</table>

| Summe | – | – | – | 150 | 45 | 5 | – |

Modulbeauftragte(r): Bongartz
Sprache: Deutsch
Turnus: Sommersemester
Standort: RAC
Lehrende: Bongartz, Kohl
Zwingende Voraussetzungen: Teilnahme an der Laserschutzbelehrung
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Photonen-Gewebe Wechselwirkung, Modelle zur Lichtausbreitung in streuenden und absorbierenden Medien, optische Diagnostik und Therapie, spektroskopische und interferometrische Methoden der Lasermedizin.
5.10 Kernspintomographie

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL</td>
<td>Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>k.A.</td>
<td>45</td>
<td>15</td>
<td>1,5</td>
<td>SL</td>
<td>Testate</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td>75</td>
<td>–</td>
<td>2,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Holz
Sprache: Deutsch

Turnus: Wintersemester
Standort: RAC

Lehrende: Holz

Zwingende Voraussetzungen: keine

Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

5.11 Computertomographie (inkl. Nuklearmedizin und Röntgendiagnostik)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>60</td>
<td>15</td>
<td>2</td>
<td>SL: Testate</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>60</td>
<td>–</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Prokic
Sprache: Deutsch
Turnus: Sommersemester
Standort: RAC
Lehrende: Prokic
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Studierende lernen und sammeln praktische Erfahrung im Umgang mit einem komplexen technischen System. Die Studierenden können theoretisches physikalisches Wissen auf eine konkrete Anwendung übertragen.

Inhalt

Unterschiedliche Detektortypen und verschiedene Ansätze der ortsaufgelosten Photonendetektion für die Nuklearmedizinische Bildgebung (Gamma-Kammera, PET, SPECT) und für die Röntgenbildgebung; Physik und Technik der Gamma-Kammera, Single-Photon-Emissions-Computertomografie (SPECT), Positronen-Emissions-Tomographie (PET); Rekonstruktions- und Korrekturverfahren von PET und SPECT; Physik und Technik der Röntgenbildgebung; Computertomographie: Bildrekonstruktion für die Fächerstrahlgeometrie; Spiral-CT; Dualenergie-CT; Prinzip und Zweck von Qualitätskontrollen an nuklearmedizinischen Bildungsgeräten und an Geräten für die Röntgenbildgebung; multimodale Geräte (z. B. SPECT/CT, PET/CT) charakterisieren und deren Vor- sowie Nachteile benennen und einschätzen; die wichtigsten klinischen und präklinischen Anwendungen der nuklearmedizinischen Bildgebung, der Computertomographie und der Röntgendiagnostik; Methoden und Verfahren zur Dosimetrie für nuklearmedizinische Therapie und Diagnostik; Methoden und Verfahren zur Dosimetrie und Qualitätssicherung für die Röntgenbildgebung und Computertomographie; die gesetzlichen und methodischen Grundlagen des Strahlenschutzes für die Bereiche der Röntgendiagnostik, Computertomographie und Nuklearmedizin.
5.12 Physik und Technik der Strahlentherapie

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>k.A.</td>
<td>60</td>
<td>15</td>
<td>2</td>
<td>SL: Testate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td>60</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td></td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Prokic

Sprache: Deutsch

Turnus: Wintersemester

Standort: RAC

Zwingende Voraussetzungen: keine

Inhaltliche Voraussetzungen: keine

Verwendbarkeit: M. Sc. Applied Mathematics, M. Sc. Applied Physics

Lernziele und Kompetenzen

Vertieften Grundlagenkenntnisse zu physikalischen Wechselwirkungen im Gewebe; Kenntnis von Technik und Funktion moderner Strahlentherapieverfahren; Basiswissen über Geräte zur Strahlentherapie (Röntgentherapie, Hochvolttherapie, Afterloading, Elektronen- und Partikeltherapie); Kenntnis der klinisch relevanten dosimetrischen Verfahren und deren Durchführung; Kenntnis und Anwendung wichtiger Algorithmen zur Dosisberechnung in der Bestrahlungsplanung; Basiswissen der Voraussetzungen und Durchführung klinischer Therapieverfahren (perkutane Therapie, intraoperative Therapie, Brachytherapie) und Simulation; Kenntnisse der Qualitätssicherung von Geräten und Verfahren.

Die Studierenden verfügen nach erfolgreichem Abschluss des Moduls über das physikalisch-technische Basiswissen, als Grundlage für die wissenschaftliche und klinische Arbeit (Medizinphysikexperte) in der Strahlentherapie.

Inhalt

Grundlegende physikalische Wechselwirkungen; Physik und Technik von Bestrahlungsgeräten (Linearebeschleuniger, Ringbeschleuniger (Zyklotron), Radioaktive Quellen (Afterloading, Seed-Applikation), Röntgentherapiegeräte); Dosimetrie ionisierender Strahlung (Photonen- und Elektronendosimetrie, klinische Dosimetrie und Qualitätssicherung, Detektoren, Dosimetrieprotokoll); Dosisberechnungsverfahren mit Photonen, Elektronen, Hadronen; Qualitätssicherung von Geräten und Verfahren; Sicherheitssysteme; Grundlagen der Bestrahlungsplanung für die Strahlentherapie und Brachytherapie; Bildgebung in der Strahlentherapie und Image Guidance (MV Bildgebung, kV Bildgebung, andere Modalitäten wie PET, MRT, Sono).

Bemerkungen

Es ist geplant, einen Teil des Praktikums in der Strahlentherapie einer Klinik oder einer Praxis in der Umgebung von Remagen durchzuführen.

5.13 Einführung in die Sportmedizin 1 (03SP2901)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>3711020, 3711022, 3711023</td>
<td>50</td>
<td>60 (4 SWS)</td>
<td>60</td>
<td>2</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbeauftragte(r):</td>
<td>Gruber</td>
<td>Sprache: Deutsch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turnus:</td>
<td>jedes Semester</td>
<td>Standort: CamKob</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lehrende:</td>
<td>Gruber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zwingende Voraussetzungen:</td>
<td>keine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inhaltliche Voraussetzungen:</td>
<td>keine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verwendbarkeit:</td>
<td>M. Sc. Applied Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lernziele und Kompetenzen

Sie verfügen über das Wissen um die verschiedenen Energiebereitstellungsformen und die Anpassungserscheinungen des Organismus bei sportlicher Belastung. Sie haben Kenntnis über allgemeine Trainingsprinzipien und Trainingsmethoden zur Steigerung der sportlichen Leistung.

Die Studierenden kennen die physikalischen Grundlagen zur biomechanischen Analyse von sportlichen Bewegungsabläufen des menschlichen Körpers. Sie erlangen Kenntnis über aktuelle Theorien zur sportbezogenen Bewegung und ihrer Veränderung aus trainingswissenschaftlicher und bewegungswissenschaftlicher Perspektive.

Inhalt

Bemerkungen

Das Modul setzt sich aus den Vorlesungen Einführung in die Sportmedizin (Anatomie) (3711021) & (Physiologie) (3711020) - 2 LP, Einführung in die Trainingswissenschaft (3711023) - 2 LP sowie Einführung in die Bewegungswissenschaft (3711022) - 2 LP zusammen.
5.14 Einführung in die Sportmedizin 2 (03SP2902)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 oder 3</td>
<td>Seminar</td>
<td>3711025</td>
<td>20</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>benotetes Referat</td>
</tr>
<tr>
<td>Selbststudium</td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>30</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Gruber
Sprache: Deutsch
Turnus: jedes Semester
Standort: CamKob
Lehrende: Gruber
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: Kompetenzen aus dem Modul Einführung in die Sportmedizin 1 (03SP2901)
Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Die Studenten haben vertieftes Wissen über die physikalischen Größen zur biomechanischen Betrachtung von Bewegungen des menschlichen Körpers. Sie kennen die Grundgesetze der Mechanik und können diese zur Analyse sportlicher Bewegungsabläufe anwenden. Sie haben Kenntnis über aktuelle Theorien sportbezogener Bewegung und ihrer Veränderung aus bewegungswissenschaftlicher Perspektive. Sie erlangen die Fähigkeit, aktuelle Publikationen aus der Bewegungswissenschaft / Biomechanik kritisch reflektierend zu verfolgen und für die persönliche Fortbildung zu nutzen.

Inhalt

Bemerkungen

Das Modul besteht aus dem Seminar Vertiefung Bewegungswissenschaft (3711025).
5.15 Analyse funktioneller und struktureller MRT-Bildgebungsdaten

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>–</td>
<td>k.A.</td>
<td>45</td>
<td>15</td>
<td>1,5</td>
<td>SL: praktische Anwendung</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>75</td>
<td>–</td>
<td>2,5</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r):	Scheef
Turnus:	nach Bedarf und Möglichkeit
Lehrende:	Scheef
Zwingende Voraussetzungen:	keine
Inhaltliche Voraussetzungen:	keine
Verwendbarkeit:	M. Sc. Applied Physics

Lernziele und Kompetenzen

Inhalt

Praktikumsinhalt

In Form eines Praktikums werden mit Hilfe öffentlich verfügbarer Daten die in der Vorlesung besprochenen Verfahren angewendet.
6 Wahlmodule

6.1 Medizinische Bild- und Signalverarbeitung

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>45 (3 SWS)</td>
<td>45</td>
<td>1,5</td>
<td>PL: Hausarbeit und/oder Vortrag</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>–</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td></td>
<td>90</td>
<td>3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>60</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Dellen
Sprache: Deutsch
Turnus: jedes dritte Semester
Standort: RAC
Lehrende: Dellen
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: Grundkenntnisse Bild- oder Signalverarbeitung

Lernziele und Kompetenzen

Inhalt

Bemerkungen

Dieses Modul kann auch für Studierende mit medizintechnischem Schwerpunkt von Interesse sein.

Literatur

Weitere aktuelle Forschungsliteratur.
6.2 Mustererkennung

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>45 (3 SWS)</td>
<td>45</td>
<td>1,5</td>
<td>PL: Klausur, Hausarbeit oder Vortrag</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>–</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>90</td>
<td></td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>60</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Dellen
Sprache: Deutsch
Turnus: nach Bedarf und Möglichkeit
Standort: RAC

Lehrende: Dellen, Neeb

Zwingende Voraussetzungen: keine

Inhaltliche Voraussetzungen: Analysis, Lineare Algebra

Lernziele und Kompetenzen

Die Studierenden kennen verschiedene Methoden zur Mustererkennung und können deren Vor- und Nachteile kritisch einschätzen. Sie sind in der Lage, die Methoden auf Probleme der Mustererkennung anzuwenden, passende Algorithmen auszuwählen und umzusetzen. Sie verstehen wissenschaftliche Veröffentlichungen, die diese Verfahren verwenden und können die Ergebnisse kritisch beurteilen.

Inhalt

Vorverarbeitung von Daten, Merkmalsextraktion, Merkmalsreduktion, Klassifikation, Lernverfahren (z. B. neuronale Netze und Support-Vector-Maschinen).

Bemerkungen

Dieses Modul könnte auch für Studierende mit medizintechnischem Schwerpunkt von Interesse sein.

Literatur

- Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
6.3 Auslandslehrveranstaltung

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>60 (4 SWS)</td>
<td>60</td>
<td>2</td>
<td>PL: s. Bemerkungen</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>90</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>60</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Ankerhold
Sprache: je nach Ausland

Turnus: nach Bedarf und Möglichkeit
Standort: ausländische Hochschule

Lehrende: Lehrende der ausländischen Hochschule

Zwingende Voraussetzungen: keine

Inhaltliche Voraussetzungen: keine

Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Mit einem zeitlich begrenzten Aufenthalt an einer ausländischen Hochschule festigen die Studierenden ihre interkulturelle Kompetenz. Nach Abschluss des Moduls haben sie im jeweiligen Bereich ihre fachliche Kompetenz erhöhen aber auch soziale Kompetenzen wie Teamfähigkeit, Anpassungsfähigkeit in einer fremden Umgebung und der Fähigkeit zur Metakommunikation sowie strategische Kompetenzen wie die Fähigkeit zur Problemlösung, Organisationsfähigkeit und Fremdsprachenkenntnisse erweitern können.

Inhalt

Je nach gewählter Lehrveranstaltung.

Bemerkungen

Literatur

je nach Thema
6.4 Parallel Computing

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3 Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: mündliche Prüfung oder Hausarbeit mit Vortrag</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>90</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>60</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Schmidt
Sprache: Englisch

Turnus: Sommersemester
Standort: RAC

Lehrende: Jaekel, Schmidt, Berti

Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

The students will learn the different basic models of parallel processing used in modern hardware architectures: Threads, vectorization, and distributed memory parallelization, that are used in almost every modern hardware, from cell phones and laptops to workstations, GPUs and PC clusters. The students will solve problems arising from engineering and mathematical applications on several of those hardwares and will present their results.

Inhalt

Different Parallel Programming models:
Threads (C, C++, Java or others), OpenMP directives, utilization and programming models for graphical processors (CUDA, OpenCL), parallel algorithms for distributed memory systems (MPI), parallel Monte-Carlo-Methods, use of parallel libraries.

Bemerkungen

Lessons, exercises, tutorials and the seminar will be presented in English.

Literatur

P. Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann, 2011
E. Kandort, J. Sanders, CUDA by Example, Addison-Wesley, 2010
6.5 Kontinuumsmechanik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>45 (3 SWS)</td>
<td>45</td>
<td>1,5</td>
<td>PL: mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>–</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>90</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>60</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Schmidt
Sprache: Deutsch
Turnus: nach Bedarf und Möglichkeit
Standort: RAC
Lehrende: Schmidt
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Literatur

6.6 Spezielle Relativitätstheorie

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung mit integ. Übung Selbststudium</td>
<td>–</td>
<td>k.A.</td>
<td>60 (4 SWS)</td>
<td>60</td>
<td>2</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>90</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Kremer

Sprache: Deutsch

Turnus: nach Bedarf und Möglichkeit

Standort: RAC

Zwingende Voraussetzungen: keine

Inhaltliche Voraussetzungen: keine

Verwendbarkeit: M. Sc. Applied Mathematics, M. Sc. Applied Physics

Lernziele und Kompetenzen

Inhalt

Literatur

6.7 Künstliche Intelligenz

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>90</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>60</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Fiedler
Sprache: Deutsch
Lehrende: Fiedler
Standort: RAC
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Was ist KI; intelligente Agenten; Problemlösen; Wissen, Schließen, Planen; unsicheres Wissen und Schließen; Lernen; Sprachverarbeitung; Wahrnehmen und Handeln; Philosophische Aspekte.

Literatur

6.8 Fortgeschrittene Quantenmechanik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 oder 3 Vorlesung</td>
<td>–</td>
<td>30</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>–</td>
<td>30</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>PL: 6 benotete Übungsblätter</td>
<td></td>
</tr>
<tr>
<td>Selbststudium</td>
<td>–</td>
<td>105</td>
<td>–</td>
<td>3,5</td>
<td>–</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Neeb
Sprache: Deutsch
Turnus: Wintersemester
Standort: RAC
Lehrende: Jaekel, Neeb
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: Kompetenzen aus: Theoretische Physik Module

Lernziele und Kompetenzen

Die Studierenden gewinnen einen erweiterten Einblick in die quantitative Beschreibung der Quantenmechanik sowie deren Anwendung zur Lösung physikalischer Probleme in unterschiedlichen Disziplinen. Sie kennen die mathematischen Begriffe, Methoden sowie Formalismen und können diese zur Lösung physikalischer Problemstellungen anwenden. Sie erlangen Kompetenzen bei den numerischen Lösungen von physikalischen Problemstellungen aus dem Bereich der nichtrelativistischen Quantenmechanik, deren Besonderheiten sowie der kritischen Beurteilung der Genauigkeit.

Inhalt

Grundlegende Axiome der Quantenmechanik; Spektralsatz und Variationsprinzipien; stationäre Störungstheorie; zeitabhängige Störungstheorie; Dichtematrix-Formalismus, thermodynamische Erwartungswerte; identischen Teilchen, Spin-Statistik-Theorem, Anwendung in der Atom-, Festkörper- und Astrophysik; numerische Lösung der Schrödinger-Gleichung, Numerov-Verfahren.
6.9 Quantenfeldtheorie

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>30</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>–</td>
<td>30</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td>105</td>
<td>–</td>
<td>3,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Jaekel
Sprache: Deutsch
Turnus: Sommersemester
Standort: RAC
Lehrende: Jaekel, Neeb
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: Kompetenzen aus: Theoretische Physik Module

Lernziele und Kompetenzen

Die Studierenden gewinnen einen Einblick in die Struktur der modernen Theorien zur Beschreibung der fundamentalen Naturkräfte. Sie kennen die mathematischen Begriffe, Methoden sowie Formalismen und können diese zur Lösung physikalischer Problemstellungen anwenden.

Inhalt

Kanonische Quantisierung; harmonischer Oszillator in Energiedarstellung; Mehrteilchensysteme in der nichtrelativistischen Quantenmechanik; zweite Quantisierung, Fock-Raum, Erzeugungs-/Vernichtungsoperatoren; Lagrangeformalismus für Felder; Noether-Theorem; relativistische Feldgleichungen (Klein-Gordon und Dirac-Gleichung); kanonische Quantisierung freier Felder; Eichinvarianz, Prinzip minimaler Kopplung; Störungstheorie; Feynman-Regeln; Anwendung auf elektrodynamische Problemen; Anwendung auf Probleme der Teilchenphysik.
6.10 Applied Differential Equations (03MA2501)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>3625011</td>
<td>30</td>
<td>60 (4 SWS)</td>
<td>60</td>
<td>2</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>3625012</td>
<td>20</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>SL: Regelmäßige Teilnahme</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>-</td>
<td>195</td>
<td>-</td>
<td>6,5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r):	Götz	Sprache: Englisch
Turnus:	Wintersemester	Standort: CamKob
Lehrende:	Götz	
Zwingende Voraussetzungen:	keine	
Inhaltliche Voraussetzungen:	Extended Knowledge in linear algebra, analysis and numerics.	

Lernziele und Kompetenzen

The students know the fundamental definitions, theorems and methods related to the theory and numerical methods for differential equations. Applying known results from calculus, linear algebra and numerics, the can tackle advanced problems, analyze them mathematically and solve them numerically. The students broaden their analytical and problem-solving skills. They are able to acquire, adapt and apply current research results.

Inhalt

E.g.: Elementary methods for initial value problems of ordinary differential equations, existence and uniqueness results for initial value problems, qualitative behaviour and stability, linear first and higher order systems of differential, one-step methods for initial value problems, consistency and convergence, Runge-Kutta methods and adaptive stepsize selection, classification of partial differential equations and elementary cases.

Bemerkungen

Die Übung kann durch ein Seminar ersetzt werden und hat dann ein Gruppengröße von 15 Teilnehmern.
6.11 Optimization (03MA2502)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>3625021</td>
<td>30</td>
<td>60 (4 SWS)</td>
<td>60</td>
<td>2</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>3625022</td>
<td>20</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>SL: regelmäßige Teilnahme</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>195</td>
<td>–</td>
<td>270</td>
<td>75</td>
<td>9</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Ruzika
Sprache: Englisch
Turnus: Sommersemester
Standort: CamKob
Lehrende: Ruzika
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: Extended knowledge in linear algebra, analysis, numerics and stochasticity. Basis knowledge in mathematical modeling.

Lernziele und Kompetenzen

The students know fundamental methods and algorithms for optimization problems. They are able to model small real-world problems and to apply optimization techniques to solve those problems.

The students broaden their analytical and problem-solving skills. They are able to acquire, adapt and apply current research results.

Inhalt

E.g.: Linear programs in standard form, fundamental theorem of linear optimization, Simplex-method, duality theorem, degenerate problems, inner point methods, optimality conditions for unconstrained and constrained problems, one-dimensional minimization; direct methods, descent methods in higher dimensions, cg-methods, basics of graph theory, optimization on graphs, methods of integer optimization.

Bemerkungen

Die Übung kann durch ein Seminar ersetzt werden und hat dann ein Gruppengröße von 15 Teilnehmern.
6.12 Bildverarbeitung 1 (04CV1001)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>04110011</td>
<td>6-90</td>
<td>60 (4 SWS)</td>
<td>60</td>
<td>2</td>
<td>PL: Klausur</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>04110012</td>
<td>6-24</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>SL: Regelmäßige Teilnahme</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>135</td>
<td>–</td>
<td>4,5</td>
<td></td>
</tr>
</tbody>
</table>

Summe

- Modulbeauftragte(r): Paulus
- Turnus: Wintersemester
- Lehrende: Paulus
- Zwingende Voraussetzungen: keine
- Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

6.13 Bildverarbeitung 2 (04CV1002)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 oder 3</td>
<td>Vorlesung</td>
<td>04110021</td>
<td>6-90</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>04110022</td>
<td>6-24</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>SL: Regelmäßige Teilnahme</td>
</tr>
<tr>
<td>Selbststudium</td>
<td></td>
<td></td>
<td></td>
<td>105</td>
<td>–</td>
<td>3,5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r):	Paulus	Sprache:	Deutsch
Turnus:	Sommersemester	Standort:	CamKob
Lehrende:	Paulus		
Zwingende Voraussetzungen:	keine		
Inhaltliche Voraussetzungen:	keine		

Lernziele und Kompetenzen

Inhalt

6.14 **Entrepreneurship, Technologie- und Innovationsmanagement**
(04IM2009)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>4220091</td>
<td>6-90</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>s. Bemerkungen</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>4220092</td>
<td>6-24</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>120</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Summe – – – 180 60 6 –

Modulbeauftragte(r): von Korflesch
Sprache: Deutsch oder Englisch
Turnus: jedes dritte Semester
Standort: CamKob
Lehrende: von Korflesch
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: Broad interest and understanding of scientific processes and knowledge transfer issues.

Verwendbarkeit: B. Sc. Informationsmanagement, M. Sc. Applied Physics

Lernziele und Kompetenzen

The objective of this module is to provide an in-depth experience of the methodology of “entrepreneurial design thinking” for scientific entrepreneurship and the broader framework of technology transfer. After studying this module, students are able to understand the basics of scientific entrepreneurship’s challenges, the process and related instruments of design thinking, as well as the technology transfer framework.

After the entrepreneurial design thinking process, they will be able to self-detect problems which offer opportunities for entrepreneurial activities. Also, they gained competences in implementing artefacts in terms of problem solutions and to analyse and elaborate on a business canvas, independently. In addition, they will be able to systematically present their solutions in a professional setting simulating venture capitalists’ potential interests in investing into their solutions. The critical investigation and analysis of the technology transfer framework will offer additional insights into other ways of how to transfer scientific knowledge into value-creating products and services and will enable them to self-reliantly identify starting-points for in-depth analysis, problem identification and solutions with regard to idea, knowledge and technology transfer.

Inhalt

Scientific Entrepreneurship, Entrepreneurial Design Thinking, Technology Transfer.

Bemerkungen

Prüfungsform: Seminal work (ca. 5000 words) and presentation in workshop; Presentations and small seminal works (ca. 2500 words) in exercises (Modulprüfung)
6.15 Numerische Methoden der Angewandten Physik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>–</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td></td>
<td>105</td>
<td>–</td>
<td>3,5</td>
<td>–</td>
</tr>
</tbody>
</table>

Summe

| – | – | – | 150 | 45 | 5 | – |

Modulbeauftragte(r): Hartmann
Sprache: Deutsch
Turnus: Sommersemester
Standort: RAC
Lehrende: Hartmann
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine
Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Inhalt

6.16 Wissenschaftliches Rechnen und Simulation

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>–</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td>SL: Vortrag</td>
</tr>
<tr>
<td></td>
<td>Vortrag</td>
<td>–</td>
<td>k.A.</td>
<td>30</td>
<td>15</td>
<td>1</td>
<td>SL: Vortrag</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>75</td>
<td>–</td>
<td>2,5</td>
<td>–</td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>60</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Schmidt
Turnus: Wintersemester
Sprache: Deutsch
Standort: RAC
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine
Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Inhalt

6.17 Wissenschaftliche Datenanalyse

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>45 (3 SWS)</td>
<td>45</td>
<td>1,5</td>
<td>PL: Klausur</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>–</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td></td>
<td>90</td>
<td>–</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Summe | – | – | | 150 | 60 | 5 | |

Modulbeauftragte(r):	Neeb	Sprache: Deutsch
Turnus:	Wintersemester	Standort: RAC
Lehrende:	Neeb	
Zwingende Voraussetzungen:	keine	
Inhaltliche Voraussetzungen:	keine	
Verwendbarkeit:	M. Sc. Applied Physics	

Lernziele und Kompetenzen

Wesentliche Konzepte im Bereich der wissenschaftlichen Analyse von experimentellen Daten werden in der Veranstaltung vorgestellt. Die Studierenden erhalten einen Einblick in die Strategien zur Analyse umfangreicher Datensätze sowie deren korrekte statistische Interpretation. Sie sind nach Besuch der Veranstaltung in der Lage, eigene Messreihen statisch korrekt zu planen und auszuwerten.

Inhalt

6.18 Statistik für Naturwissenschaftler und Ingenieure

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung mit integ. Übung Selbststudium</td>
<td>–</td>
<td>k.A. 60 (4 SWS)</td>
<td>60 2</td>
<td>PL: Klausur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>–</td>
<td>90</td>
<td>– 3</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r):	Neuhäuser
Turnus:	Sommersemester
Lehrende:	Neuhäuser
Zwingende Voraussetzungen:	keine
Inhaltliche Voraussetzungen:	keine
Verwendbarkeit:	M. Sc. Applied Physics

Sprache: Deutsch
Turnus: Sommersemester
Standort: RAC

Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Die Studierenden kennen Maßzahlen und graphische Darstellungen zur uni- und bivariaten Beschreibung von Daten. Sie können stochastische Phänomene mit Zufallsvariablen modellieren und kennen die wichtigen parametrischen Verteilungen sowie deren Erwartungswerte und Varianzen. Sie können Hypothesen über experimentell gewonnene Daten statistisch testen und die gebräuchlichsten Konfidenzintervalle bestimmen.

Inhalt

Literatur

Christine Müller, Stochastik in den Ingenieurwissenschaften, Springer E-Book, 2013
Hans Benker, Statistik mit MATHCAD und MATLAB Springer, Berlin 2013
6.19 Mikrocontroller-technik

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3 Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>PL: mündliche Prüfung</td>
<td></td>
</tr>
<tr>
<td>Projekt</td>
<td>–</td>
<td>k.A.</td>
<td>60</td>
<td>15</td>
<td>2</td>
<td>PL: Präsentation</td>
<td></td>
</tr>
<tr>
<td>Selbststudium</td>
<td>–</td>
<td>–</td>
<td>60</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Carstens-Behrens
Sprache: Deutsch
Turnus: nach Bedarf und Möglichkeit
Standort: RAC
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Zahlensysteme und Codierung, Daten-Codes, Grundlagen der Rechnerarchitektur, Aufbau von Mikroprozessoren, Speicher, Befehlsstruktur, Befehlsvorrat, Adressierung, Schnittstellen und Bussysteme, Mikrocontroller an verschiedenen Beispielen, Programmierung von Mikrocontrollern in C und Assembler, Arduino, Anwendungen.

Projekt

Die Studierenden programmieren in Einzel- oder Kleingruppen einen Mikrocontroller anhand einer vorgegebenen Aufgabenstellung. Sie sorgen für die elektrische Beschaltung und erweitern das System um notwendige Hardware. Typische Aufgabenstellungen umfassen Datenerfassung, Prozesssteuerung oder Regelungstechnische Aufgaben.

Bemerkungen

Die Prüfungsleistung besteht aus einer mündlichen Prüfung, in der die Präsentation des Projekts integriert ist.

Literatur

H. Bernstein, Mikrocontroller, Springer
J. Börsök, Mikroprozessortechnik, VDE-Verlag
J. Wiegelmann, Softwareentwicklung in C für Mikroprozessoren und Mikrocontroller, Hüthig
6.20 Computer Aided Design

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung mit integr. Übung Projekt</td>
<td>–</td>
<td>k.A.</td>
<td>60 (4 SWS)</td>
<td>60</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>90</td>
<td>–</td>
<td>3</td>
<td>PL: Projekt</td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>60</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Hartmann
Sprache: Deutsch
Turnus: nach Bedarf und Möglichkeit
Standort: RAC
Lehrende: Hartmann, Warnecke
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine
Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Die Studierenden erwerben folgende Kompetenzen: Umgang mit einem komplexen CAD Programmpaket (SolidWorks), Befähigung zur Analyse und Lösung von konstruktiven Aufgabenstellungen, Fähigkeit zur Beurteilung von mechanischen Belastungsgrenzen.

Inhalt

Themenbeispiele: Konstruktion von Bauteilen aus 2D-Skizzen, komplexe Modellierwerkzeuge (Kurvenaustragung, Wandung, Spline, Helix, etc.), Konstruktionszeichnungen für die Fertigung, Integrieren von vorgefertigten Komponenten aus einer Toolbox, Visualisierung von beweglichen Komponenten, mechanische und thermische Simulation, Belastungsstudien.

Bemerkungen

Das Modul wird mit einem benoteten Projekt abgeschlossen.
6.21 Mesh Processing (04CV2025)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>Klausur</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td>120</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>180</td>
<td>60</td>
<td>6</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Lawonn
Sprache: Deutsch
Turnus: Sommersemester
Standort: CamKob
Lehrende: Lawonn
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine
Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Inhalt

Introduction: surface representations, Data acquisition & surface reconstruction, Mesh data structures, Differential geometry I/II, Discrete differential geometry, Smoothing / denoising, Parameterization, Decimation / simplification, Remeshing, Shape editing / deformation, Model repair.

Literatur

Mario Botsch, Mark Pauly, Leif Kobbelt, Pierre Alliez, Bruno Lévy, Stephan Bischoff, and Christian Rössl. Geometric modeling based on polygonal meshes. In SIGGRAPH Course Notes, San Diego, California, 2007. ACM. revised course notes
6.22 Forschungsprojekt (Research Project)

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Projekt</td>
<td>–</td>
<td>2-3</td>
<td>150</td>
<td>30</td>
<td>5</td>
<td>PL: nach Vorgabe des Lehrenden</td>
</tr>
<tr>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>30</td>
<td>5</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Ankerhold
Sprache: Deutsch oder Englisch
Turnus: jedes Semester
Standort: RAC
Zwingende Voraussetzungen: je nach Vorgabe des Projektes eventuell Teilnahme an der Laserschutzbelehrung
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Die Studierenden erhalten die Fähigkeit zum schnellen Einarbeiten in eine wissenschaftliche Problemstellung und sind in der Lage, wesentliche Punkte aus aktuellen Fachpublikationen zu erfassen und zu diskutieren. Sie können ein Forschungsprojekt im Team durchführen und sind nach Abschluss des Moduls in der Lage, komplexe wissenschaftliche Sachverhalte zu verstehen, zu kommunizieren und zusammen mit den eigenen Projektergebnissen einem Fachpublikum aus Studierenden und Lehrenden zu präsentieren.

Projekt

Ein aktuelles Forschungsthema wird unter Anleitung im Team (2-3 Studierende) bearbeitet, die Studierenden werden in Forschungsaktivitäten eingebunden.

Literatur

je nach aktueller Themenstellung
6.23 Moderne Objektorientierte Programmierung

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1 Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
<td>–</td>
<td>k.A.</td>
<td>15 (1 SWS)</td>
<td>15</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td></td>
<td>105</td>
<td></td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>Summe</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>45</td>
<td>5</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Friemert
Sprache: Deutsch
Turnus: nach Bedarf und Möglichkeit
Standort: RAC

Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

Inhalt

Literatur

Eric Freeman, Head First Design Patterns, 2014.
6 Wahlmodule

6.24 Methoden der Fernerkundung

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>–</td>
<td>k.A.</td>
<td>30 (2 SWS)</td>
<td>30</td>
<td>1</td>
<td>Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Projekt</td>
<td>–</td>
<td>k.A.</td>
<td>45</td>
<td>15</td>
<td>1,5</td>
<td>SL: Kurzprojekte</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td></td>
<td></td>
<td>75</td>
<td>–</td>
<td>2,5</td>
<td>–</td>
</tr>
</tbody>
</table>

| Summe | – | – | – | 150 | 45 | 5 | – |

Modulbeauftragte(r):	Bongartz	Sprache: Deutsch
Turnus:	nach Bedarf und Möglichkeit	Standort: RAC
Lehrende:	Bongartz, Jenal, Kneer, Weber	
Zwingende Voraussetzungen:	keine	
Inhaltliche Voraussetzungen:	keine	
Verwendbarkeit:	M. Sc. Applied Physics	

Lernziele und Kompetenzen

Inhalt

Themen: Anwendungen der Fernerkundung (Landwirtschaft, Geologie, Archäologie, ...), Probleme und grundlegende Techniken (GNSS, IMU, Trägerplattformen, Lageregelung, Forward-Motion-Compensation), Sensorik und Messprinzipien, optische Sensorik (Kamera-Technik, Abbildungsfehler, VIS-, NIR-, TIR-Sensorik), multi- und hyperspektrale Systeme, Pushbroom-, Wiskbroom-Verfahren, LIDAR), elektromagnetische Sensorik (Geomagnetik, Radar), Auswertemethoden (Vegetationsindizes, Landcover-Classification, ...), Trägerplattformen (UAV, bemannete Fluggeräte, Satelliten).
6.25 New Venture Technology Project

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h</th>
<th>Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Seminar</td>
<td>–</td>
<td>30</td>
<td>45 (3 SWS)</td>
<td>45</td>
<td>1,5</td>
<td>PL: s. Bemerkungen</td>
</tr>
<tr>
<td></td>
<td>Projekt</td>
<td>–</td>
<td>3x10</td>
<td>15</td>
<td>15</td>
<td>0,5</td>
<td>PL: s. Bemerkungen</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>–</td>
<td>120</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Modulbeauftragte(r): Heinzen
Sprache: Deutsch/Englisch
Turnus: jedes Semester
Standort: RAC
Lehrende: Heinzen, Kneer, Rausch, Binder
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine

Lernziele und Kompetenzen

In this module, students run through an entire product development process. Starting with customer-centered scouting and ideation, participants learn how to successfully design, iterate and manage new technologies as well as how to innovate new (digital) business models and finalize business plans. The so-called New Venture Technology Project is accessible for students of both faculties (management and mathematics) and simulates reality-based business practices. Due to its interdisciplinary approach, students learn how to successfully exchange ideas, knowledge and approaches within their groups and are encouraged to collaborate with students from other disciplines. During their product development processes, the interdisciplinary teams are trained via impulse workshops (Design Thinking, Agile Development or Lean Startup) and are individually coached by thematic experts regarding prototyping of their technical ideas (prototyping with a 3D printer or with programming software). In order to pass this module, students finally have to process their technical ideas into pitch videos and finalize their business plan. Students gain social and communication skills through interdisciplinary group discussion and knowledge sharing and video-based role plays and pitches. They acquire knowledge in fields of innovation and technology management and entrepreneurial behavior as well as product development techniques. Knowledge sources are contemporary studies of selected journals, customized e-learning and support from coaches and experts. Students gain management skills by e.g. transferring the theoretical concepts into practical questions, creating customer experiences through prototyping, applying problem-solving management techniques and systemic skills by recognizing and evaluating innovation processes from an individual, organizational and network perspective.

Inhalt

Seminar 1: Technology and Innovation Management: Scouting and Ideation.
Workshops: Design Thinking, Agile Project Development, Lean Startup and according team needs.
Seminar 2: 3D Modelling and Printing or App Programming.
Seminar 3: Business Planning.
Throughout the course: Pitch Video Production supported by experts.

Bemerkungen

Prüfungsleistung: Video-Pitch und Business Plan

Literatur

Edgar, Jonathan, and Saxon Tint. Additive manufacturing technologies: 3D printing, rapid prototyping,
6.26 Biomechanische Simulation

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Lernformen</th>
<th>Kürzel</th>
<th>Gr.-größe</th>
<th>Aufwand/h Kont.-zeit/h</th>
<th>LP</th>
<th>Abschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 oder 3</td>
<td>Vorlesung</td>
<td>– k.A.</td>
<td>60 (4 SWS)</td>
<td>60 2</td>
<td>PL: Klausur oder mündliche Prüfung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
<td>– k.A.</td>
<td>15</td>
<td>15 0,5</td>
<td>SL: Protokolle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
<td>75</td>
<td>– 2,5</td>
<td>–</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summe – – – 150 75 5 –

Modulbeauftragte(r): Friemert
Sprache: Deutsch
Turnus: nach Bedarf und Möglichkeit
Standort: RAC
Lehrende: Friemert
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: keine
Verwendbarkeit: M. Sc. Applied Physics

Lernziele und Kompetenzen

Die Studierenden können Bewegungsdaten mit Hilfe von professionellen Motion-Capturing-Systemen aufnehmen. Sie können Fragestellungen in der Biomechanik identifizieren und analysieren, sowie ein zur Fragestellung passendes biomechanisches Modell auswählen oder selbst erstellen. Studierende können geeignete Datenverarbeitung anwenden, um die Fragestellung zu beantworten; sie können die Limitationen der Aussagekraft von Modellen bewerten.

Inhalt

Einordnung der Simulation in die Biomechanik, digitale Menschmodelle, Methoden der Bewegungsanalyse, Grundlagen der Starrkörpermechanik, anthropometrische Modelle, einfache biomechanische Modelle, Muskel-Modelle, Vorwärtsmodellierung, inverse Kinematik, inverse Dynamik, statische Optimierung, Muscle Control Theory, Data-Processing, Phasenraum, Principle Component Analysis.

Praktikumsinhalt

Verwendung eines Motion-Capturing-Systems, Datenanalyse für hochdimensionale Systeme.

Literatur