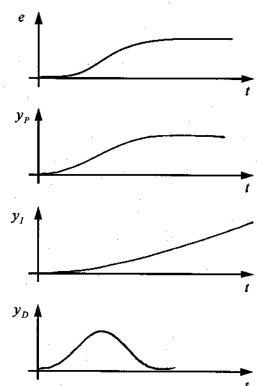
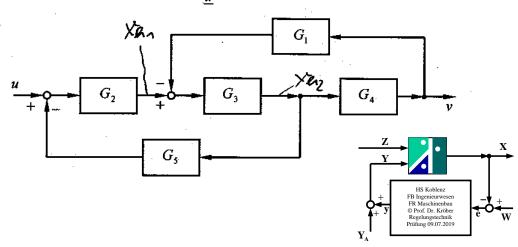

Hochschule Koblenz Blatt 1 von 5 Fachbereich Ingenieurwesen Fachrichtung Maschinenbau	Name MatrNr.				
Regelungstechnik SS 2019 Prof. Dr. W. Kröber	Aufgabe	erreichte	Punkte		
Diese Prüfung besteht aus	Fragenteil				
einem Fragenteil und einem Rechenteil. Zur Bewertung der Aufgaben muss der gesamte Lösungsweg ersichtlich sein.	1				
	2 z				
- Bearbeitungszeit : 90 min - Erlaubte Hilfsmittel :	3 <u>Y</u>		*		
- Schreib- und Zeichengerät	4				
- Taschenrechner - Formelsammlung (4 Blätter)	5	HS Koblenz			
	6 Q v	FB Ingenieurwesen FR Maschinenbau © Prof. Dr. Kröber	- - 0		
Note:	Summe Y _A	Regelungstechnik Prüfung 09.07.2019			
KURZFRAGEN:					
 Bei der Parameterermittlung einer Regelstrecke reagiert die Regelstrecke aufgrund einer sprungförmigen Stellgrößenveränderung mit dem nebenstehenden Verlauf der Regelgröße. Zeigen Sie (in Skizze eintragen!), wie man die Ausgleichszeit ermittelt! (2P Bei einem Regelkreis ist K_P = 0,5 und «)	reserve is			
$A_R = 4$. Wie groß ist K_P , wenn die Ampli (1P) $= 1$					
3. Bei der Füllstandsregelung (Regelgröße Volumenstrom (Stellgröße Q) gibt es fo	h) und dem z lgende Gleich	ufließenden ung:	·		
$Q = A \cdot \frac{dh}{dt}$	_				
Das Verhalten ist nicht PT_1 , sondern: (2P)	I-Glie	<u>/</u>	· · · · · · · · · · · · · · · · · · ·		
4. In einem Regelkreis gibt es eine Vorze andere Möglichkeiten (stabiles Verhalt (2P)	en)?	- ·	es auch		
Inngeroide Anzold Ju	vertierunga	1			
5. Wie viele Stellglieder benötigt man be der 2 Regler eingesetzt werden? (1P)			, bei		


8. Einen Tiefpassfilter kann man im Sinne der Regelungstechnik als ein PT₁-Glied auffassen. Durch welches Glied wird ein Hochpassfilter beschrieben? (falsches Antwortbeispiel PT₂)
(2P)

$$y = y_P + y_I + y_D = K_P \cdot e + K_I \cdot \int e \cdot dt + K_D \cdot \frac{de}{dt}$$

10. Durch Ausprobieren wurde eine optimale PID-Reglereinstellung von $K_P = 0.4$ und $T_V = 1$ s ermittelt. Wie groß muss dann T_n sein?


(2P) $T_N = 55$

RECHENTEIL:

Aufgabe 1 (11P)

Bestimmen Sie durch Einführen von Hilfsgrößen für den abgebildeten Regelkreis den Frequenzgang $G = \frac{v}{u}$!

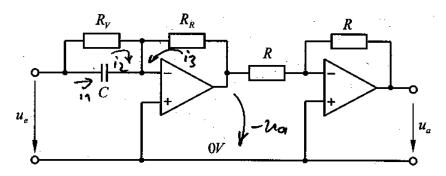
Aufgabe 2 (10P)

Eine Größe X hängt von den Eingangsgrößen Y und Z ab, also X = f(Y,Z).

a. In der Tabelle sind Werte X = f (Y, Z) eingetragen. Bestimmen Sie für den Arbeitspunkt Y_A = 2 und Z_A = 4 die Parameter K_Y und K_Z (Differenzenverfahren)!

	Z	Z						
Y			2,5	3,0	3,5	4,0	4,5	
	1	, 5	9,375	13,500	18,375	24,000	30,375	
	2	,0	12,500	18,000	24,500	32,000	40,500	
ŧ	2	, 5	15,625	22,500	30,625	40,000	50,625	

Hilfestellung:
$$K_Y |_{A} \approx \frac{\partial X}{\partial Y} |_{A}$$
 und $K_Z |_{A} \approx \frac{\partial X}{\partial Z} |_{A}$


b. Bestimmen Sie die Parameter K_Y und K_Z für den gleichen Arbeitspunkt auf rechnerischem Wege (partielle Ableitungen)!

Gehen Sie aus von: $X = Y \cdot Z^2$

Aufgabe 3 (11P)

Die Schaltung zeigt einen idealen PD-Regler. Bestimmen die K_{P} und T_{V} in Abhängigkeit der angegebenen Widerstände und des Kondensators!

Hilfestellung: $G = \frac{u_a}{u_e} = K_P \cdot (1 + j\omega \cdot T_V)$

Blatt 4 von 5

Aufgabe 4 (14P)

Eine Regelstrecke 2. Ordnung wird mit einem PI-Regler geregelt.

$$G_{S} = \frac{K_{S}}{(1+j\omega T)\cdot(1+j\omega T)} \qquad G_{R} = K_{P}\cdot(1+\frac{1}{j\omega T_{R}})$$

Beim Aufstellen des Führungsfrequenzganges erhält man die angegebene Differentialgleichung:

$$a_3 \cdot \frac{d^3 x}{dt^3} + a_2 \cdot \frac{d^2 x}{dt^2} + a_1 \cdot \frac{dx}{dt} + a_0 \cdot x = b_0 \cdot w + b_1 \cdot \frac{dw}{dt}$$

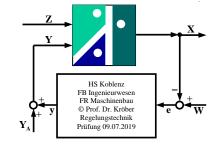
Bestimmen Sie die Koeffizienten der Differentialgleichung in Abhängigkeit von $K_{\rm S}$, T, $K_{\rm P}$ und $T_{\rm n}$!

Aufgabe 5 (18P)

Bestimmen Sie von dem angegebenen Frequenzgang |G| und φ an der Stelle ω = 2 s⁻¹!

 $G = \frac{K_1 \cdot (1 + j\omega T_1)}{j\omega \cdot (1 + j\omega T_2)}$

Der graphische Funktionsverlauf hat für $\omega = 2$ s⁻¹ eine Besonderheit (siehe Aufgabe 6). Um welche Besonderheit handelt es sich? (Falsches) Antwortbeispiel: Kurvenverlauf ist besonders steil.

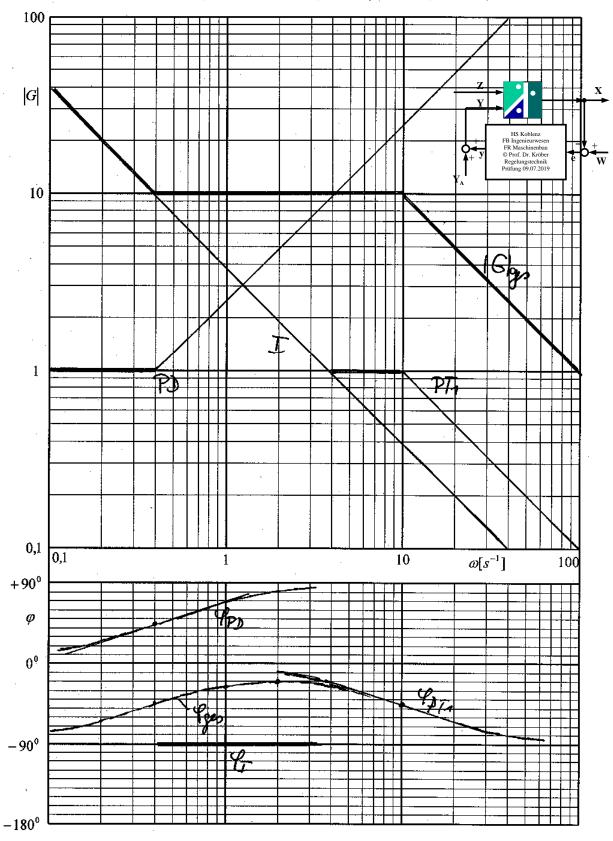

Zahlenwerte: $K_{I} = 4 \text{ s}^{-1}$ $T_{1} = 2,5 \text{ s}$ $T_{2} = 0,1 \text{ s}$

Hilfestellungen:

I-Glied: $|G| = \frac{K_I}{\omega}$ $\varphi = -90^{\circ}$

PD-Glied: $|G| = K \cdot \sqrt{1 + (\omega \cdot T)^2}$ $tan(\varphi) = \omega \cdot T$

PT₁-Glied: $|G| = \frac{K}{\sqrt{1 + (\omega \cdot T)^2}}$ $tan(\varphi) = -\omega \cdot T$



Aufgabe 6 (16P)

Der angegebene Frequenzgang soll graphisch im Bode-Diagramm dargestellt werden. $G = \frac{K_l \cdot (1+j\omega T_1)}{j\omega \cdot (1+j\omega T_2)}$

$$G = \frac{K_1 \cdot (1 + j\omega T_1)}{j\omega \cdot (1 + j\omega T_2)}$$

Gegebene Zahlenwerte: $K_1 = 4 \text{ s}^{-1}$ $T_1 = 2,5 \text{ s}$ $T_2 = 0,1 \text{ s}$

$$2 m 1) \quad x_{n} = G_{2} \left(m - G_{5} \cdot x_{n} z \right)$$

$$x_{n} = G_{3} \left(x_{n} - G_{1} \cdot v \right)$$

$$x_{n} = G_{3} \left(x_{n} - G_{1} \cdot v \right)$$

$$x_{n} = G_{4} \cdot x_{n} z$$

$$\frac{v}{GY} = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_1 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_1 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_1 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_1 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_1 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_1 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_1 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_1 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_1 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_1 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_1 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_1 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_1 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_2 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_2 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_2 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_2 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_2 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_3 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_3 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_3 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_3 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_3 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_3 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_3 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_4 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_2 \left(M - G_3 - \frac{v}{G_4} \right) - G_4 \cdot v \right) | \cdot G_4$$

$$v = G_3 \left(G_3 - \frac{v}{G_4} \right) | \cdot G_4 - v \right) | \cdot G_4$$

$$v = G_3 \left(G_4 - \frac{v}{G_4} \right) | \cdot G_4 - v \right)$$

$$W_{2} = \frac{\Delta X}{\Delta X} = \frac{40-24}{2,5-1,5} = 16$$

$$W_{2} = \frac{\Delta X}{\Delta Z} = \frac{40,5-24,5}{4,5-3,5} = 16$$

5)
$$X=Y.2^{2}$$

 $K_{y} = \frac{\partial X}{\partial Y|_{A}} = \frac{Z^{2}}{A} = 4^{2} = 16$
 $K_{z} = \frac{\partial X}{\partial Z|_{A}} = 2.4 = 2.2.4 = 16$

2n3)
$$intiz+ij=0$$

$$\frac{ue}{Rx} + \frac{ue}{Rx} + \frac{-ua}{Rx} \Rightarrow ue(j\omega(+\frac{1}{Rx})) = \frac{ua}{Rx}$$

$$j\omega(-\frac{1}{Rx}) = Re(j\omega(+\frac{1}{Rx})) = \frac{Re}{Rx}(1+j\omega Rx \cdot C)$$

$$\frac{va}{ve} = Re(j\omega(+\frac{1}{Rx})) = \frac{Re}{Rx}(1+j\omega Rx \cdot C)$$

Besonderheit: Maximum (horizontale Tourperte)