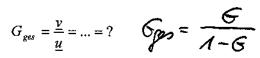

Fachhochschule Koblenz Blatt 1 von 6 Fachbereich Ingenieurwesen Fachrichtung Maschinenbau	Name MatrNr	
Regelungstechnik SS 14 Prof. Dr. W. Kröber	Aufgabe	erreichte Punkte
Diese Prüfung besteht aus	Fragenteil	
einem Fragenteil und einem Rechenteil. Zur Bewertung der Aufgaben muss der	1	
gesamte Lösungsweg ersichtlich sein.	2	. ucungeri
- Bearbeitungszeit : 90 min - Erlaubte Hilfsmittel :	3	t Läsungen
- Schreib- und Zeichengerät - Taschenrechner	4 <u>Z</u>	
- Taschenrechner - Formelsammlung (4 Blätter)	5 Y	- 1
	6	
Note :	Summe	HS Koblenz FB Ingenieurwesen
	${ $	FR Maschinenbau © Prof. Dr. Kröber
KURZFRAGEN:	$\mathbf{Y}_{\mathbf{A}}$	Regelungstechnik Prüfung 26.05.2014
Ausgangsgröße "sich einstellende Geschwindigkeit":	mit Ausple	rich
"sich einstellende Geschwindigkeit": "zurückgelegter Weg": 2. Bei einer numerischen Simulation (Zettotzeit durch folgenden Algorithmus die Totzeit? (3P)	itschritt sei 0 beschrieben: $v_i =$,1s) wird eine
"sich einstellende Geschwindigkeit": "zurückgelegter Weg": 2. Bei einer numerischen Simulation (Zettotzeit durch folgenden Algorithmus) die Totzeit? (3P)	itschritt sei 0 beschrieben: $v_i = \frac{G_i}{G_i}$,1s) wird eine u_{i-5} . Wie groß ist
<pre>"sich einstellende Geschwindigkeit": "zurückgelegter Weg": 2. Bei einer numerischen Simulation (Ze: Totzeit durch folgenden Algorithmus) die Totzeit? (3P)</pre>	itschritt sei 0 beschrieben: $v_i =$,1s) wird eine
"sich einstellende Geschwindigkeit": "zurückgelegter Weg": 2. Bei einer numerischen Simulation (Zeitotzeit durch folgenden Algorithmus die Totzeit? (3P) 7+=0,5s 3. Die Abbildung zeigt eine Kaskadenregelung. Daraus soll zur Vereinfachung ein sogenannter "einschleifiger Regelkreis" entstehen. Welche Teile entfallen dann? (3P) 4. Welcher Teil der Lösung einer Differen	itschritt sei 0 beschrieben: $v_i = \frac{G_1}{G_2}$,1s) wird eine u_{i-5} . Wie groß ist G_3
"sich einstellende Geschwindigkeit": "zurückgelegter Weg": 2. Bei einer numerischen Simulation (Zeitotzeit durch folgenden Algorithmus die Totzeit? (3P) 7	itschritt sei 0 beschrieben: $v_i = \frac{G_1}{G_2}$,1s) wird eine u_{i-5} . Wie groß ist G_3

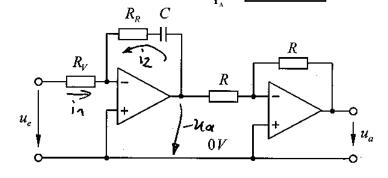
5. Auf ein Abtast-Halteglied wirkt als Eingangsgröße u(t) der abgebildete Signalverlauf. Ergänzen Sie den Signalverlauf v(t) der Ausgangsgröße!



- 6. Bei einem Regelkreis ergibt sich eine mehr oder weniger große bleibende Regeldifferenz. Diese Differenz geht auch nach großen Zeiten nicht weg. Welcher Parameter muss dann aktiviert werden? (2P)I-Anteil einschaften
- 7. Bei einem Regelkreis vergeht ein verhältnismäßig "sehr lange Zeit", bis die bleibende Regeldifferenz zu Null wird. Welchen Parameter müssen Sie dann "in welche Richtung" verändern? (2P)

8. Wie lautet der Frequenzgang des abgebildeten Systems? (3P)

$$G_{ges} = \frac{v}{u} = \dots = ?$$

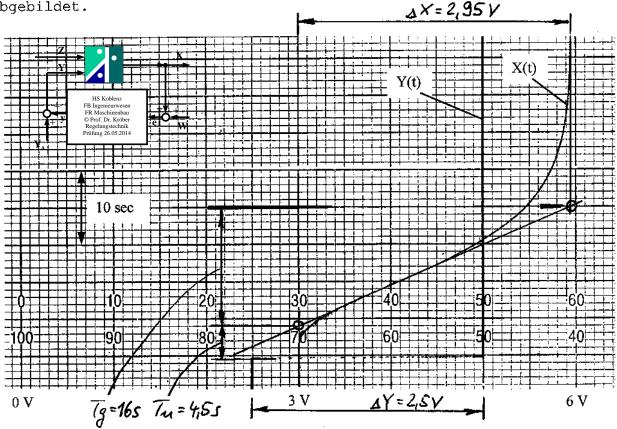

© Prof. Dr. Kröbe

RECHENTEIL:

Aufgabe 1 (12P)

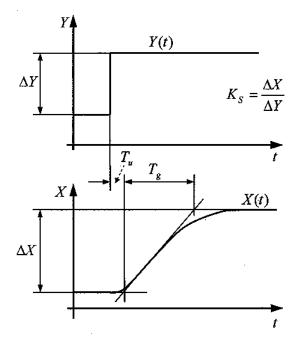
Die Abbildung zeigt ein Übertragungselement mit PI-Charakter. Es lässt sich beschreiben als:

$$G = \frac{u_a}{\underline{u_e}} = K_p \cdot \left(1 + \frac{1}{T_n \cdot j\omega}\right)$$



Wie kann man die Parameter $K_{\scriptscriptstyle P}$ und $T_{\scriptscriptstyle n}$ aus den gegebenen Größen R, $R_{\scriptscriptstyle R}$, $R_{\scriptscriptstyle V}$ und C bestimmen?

Hinweis: Nicht Ergebnis "einfach hinschreiben", sondern Nachweis erbringen!


Aufgabe 2 (18P)

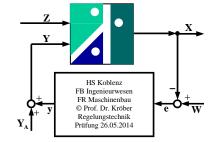
Im Labor der Regelungstechnik wird von einer PT_3 -Strecke mit Totzeit eine Sprungantwort aufgezeichnet. Der dazugehörige Messschrieb ist hier abgebildet.

Bestimmen Sie die Größen K_s , T_u , T_g und daraus die Einstellparameter für einen PID-Regler. Die Regelung soll für Sollwertsprünge ausgelegt werden und es soll kein Überschwingen auftreten.

Auszug aus den Laborunterlagen:

_						
Regler		Aperiodischer Regelverlauf		Regelverlauf mit 20% Überschwingen		
		Störung	Führung	Störung	Führung	
P	K_p	$\frac{0,3}{K_S} \frac{T_g}{T_u}$	$\frac{0,3}{K_S} \frac{T_g}{T_u}$	$\frac{0.7}{K_{S}}\frac{T_{g}}{T_{u}}$	$\frac{0.7}{K_S} \frac{T_g}{T_u}$	
PI	K_p	$\frac{0.6}{K_s} \frac{T_g}{T_u}$	$\frac{0,35}{K_S} \frac{T_g}{T_u}$	$\frac{0.7}{K_S} \frac{T_g}{T_u}$	$\frac{0.6}{K_S} \frac{T_g}{T_u}$	
	T_n	$4T_u$	$1,2T_g$	$2,3T_u$	$1T_g$	
PID	K_p	$\frac{0.95}{K_S} \frac{T_g}{T_u}$	$\frac{0.6}{K_S} \frac{T_g}{T_u}$	$\frac{1,2}{K_S} \frac{T_g}{T_u}$	$\frac{0.95}{K_{\mathcal{S}}} \frac{T_g}{T_u}$	
	T_n	2,4 T_u	$1T_{\rm g}$	$2T_u$	1,35 <i>T</i> _g	
	T_{ν}	0,42 <i>T</i> _u	$0.5T_u$	$0,42T_{u}$	0,47 T _u	

Aufgabe 3 (18P)


Zur Regelung einer Regelstrecke vom Typ PT_2 soll ein PI-Regler verwendet werden.

Regelstrecke:
$$G_S = \frac{K_S}{(1+j\omega T_1)\cdot (1+j\omega T_2)}$$
 Regler: $G_R = K_P \cdot \left(1+\frac{1}{T_n\cdot j\omega}\right)$

Berechnen Sie mit dem Hurwitzverfahren eine Einstellbedingung für Tn!

Ziel: $T_n > ...$

Hinweis: $a_1 \cdot a_2 > a_0 \cdot a_3$

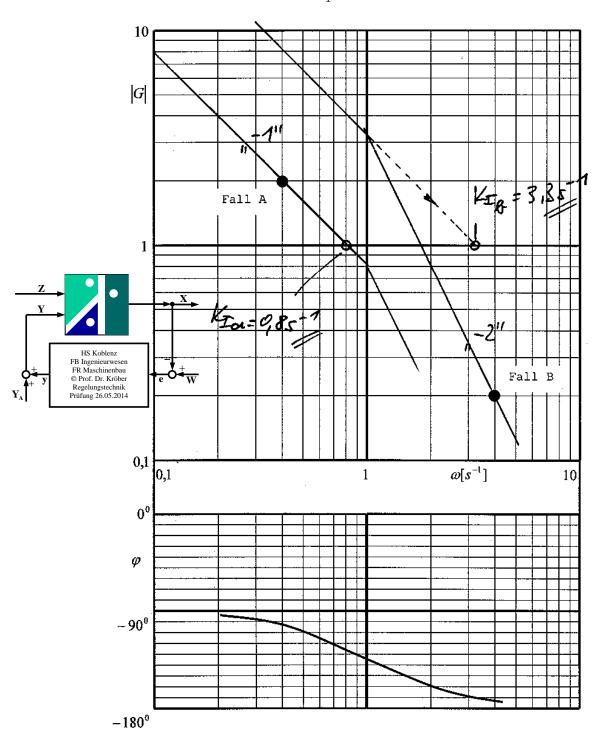
Aufgabe 4 (18P)

Bestimmen Sie von der folgenden Regelstrecke den Betrag und den Phasenwinkel für $\omega = 3 \text{ s}^{-1}!$

$$G_S = \frac{K_S}{(1+j\omega \cdot T_1) \cdot (1+j\omega \cdot T_2)} \cdot e^{-j\omega T_t}$$

Zahlenwerte: $K_s = 2$; $T_1 = 0.5$ s; $T_2 = 2$ s; $T_t = 0.25$ s

Hilfestellungen (in Teilelemente zerlegen):

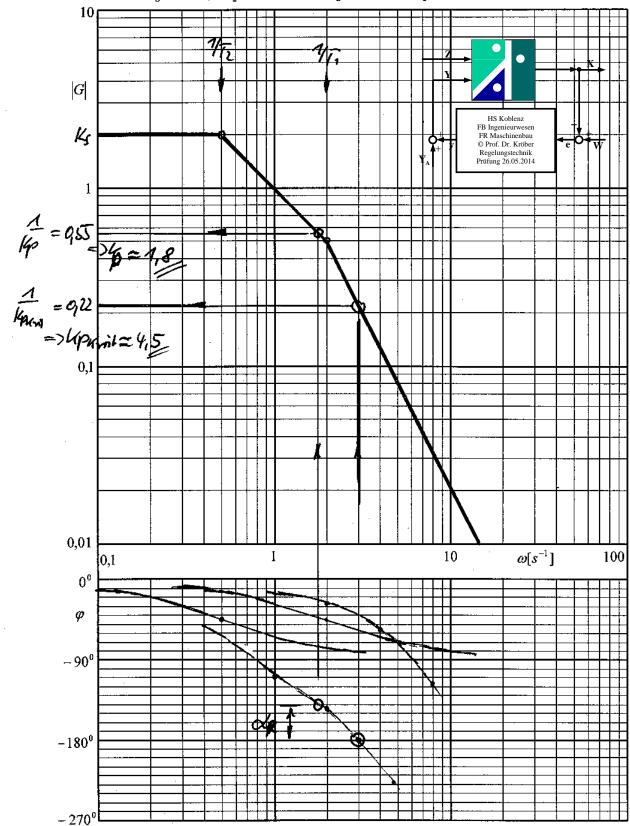

Verzögerungsglied 1. Ordnung:
$$|G| = \frac{K}{\sqrt{1 + (\omega T)^2}}$$
 $\tan(\varphi) = -\omega \cdot T$

Totzeit: $\varphi = -\omega \cdot T$,

Aufgabe 5 (12P)

In dem Bode-Diagramm ist der Phasengang eines ${\rm IT_1}$ -Gliedes eingetragen. Vom Betrag des Frequenzganges ist nur ein Punkt gegeben.

- a. Nehmen Sie an, dass nur der eingetragene Punkt "Fall A" gilt. Bestimmen Sie für diesen Fall ${\rm K}_{\rm I}!$
- b. Nehmen Sie an, dass nur der eingetragene Punkt "Fall B" gilt. Bestimmen Sie für diesen Fall $\mathrm{K}_{\mathrm{I}}!$



Aufgabe 6 (22P)

Die folgende Regelstrecke wird mit einem P-Regler geregelt. Bestimmen Sie $K_{\rm p\ krit}$ sowie $K_{\rm p}$ für den Fall, dass die Phasenreserve 40° betragen soll?

 $G_{S} = \frac{K_{S}}{(1+j\omega \cdot T_{1}) \cdot (1+j\omega \cdot T_{2})} \cdot e^{-j\omega T_{i}}$

Zahlenwerte: $K_s = 2$; $T_1 = 0.5$ s; $T_2 = 2$ s; $T_t = 0.25$ s

Lisungen Pritury Regulus preduit 26.05.44

241)
$$1n + 12 = 0$$
 $\frac{10}{RV} + \frac{1}{RR} + \frac{1}{AL} = 0$
 $\frac{10}{RV} + \frac{1}{RV} + \frac{1}{RV} = 0$
 $\frac{1}{RV} + \frac{1}{RV} +$