Lehrveranstaltung	FEMP - Finite-Elemente-Methode Praxis				
Modulsprache	Deutsch				
Modulverantwortung	Prof. DrIng. Zeitler				
Vorkenntnisse					
Termin	Winter; Dauer: 15 Wochen				
Lehrform	4 WS EDV-Seminar im PC-Pool: max. 20 Studierende				
Credits	5 CP				
Studiengang	MA Bauing				
Arbeitszeiten	Vorlesung	Übung	Projekt	Prüfung	Summe
Präsenzzeit	15	45	0	0	60
Selbststudium	0	90	0	0	90
Leistungsnachweis	-	SL	-	-	150
Legende	SL: Studienleistung; PL: Prüfungsleistung				

<u>Lernergebnisse</u> (<u>Learning outcomes</u>):

Nach der Teilnahme sind die Studierenden in der Lage:

- Reale Tragwerke eigenständig in numerische Modelle umzusetzen,
- Mögliche Fehler und Grenzen bei FEM-Berechnungen zu erkennen.

Fachkompetenz:

Folgende Inhalte werden für den Erwerb der Fachkompetenz behandelt:

- Grundlagen der Finite-Elemente-Methode (FEM),
- Fehlerquellen bei der Anwendung von FEM-Programmen,
- Einsatzbereiche und Leistungsfähigkeit von FEM-Programmen,
- Korrekte Erfassung von Lager- und Randbedingungen,
- Grenzzustände der Tragfähigkeit und der Gebrauchstauglichkeit,
- Unterschiede zwischen linearen und nichtlinearen Berechnungen,
- Zweidimensionale und dreidimensionale Strukturen,
- EDV-Übungen unter Anwendung kommerzieller FEM-Programme.

Sonstige Kompetenzen:

- Methodenkompetenz:
 - Fähigkeit, ein strukturmechanisches Problem eigenständig und gezielt mit einem FEM-Programm zu analysieren,
 - o Beurteilung der Stärken und Schwächen unterschiedlicher FEM-Programme.
- Selbstkompetenz:
 - Grenzen der eigenen Fach- und Anwendungskompetenzen erkennen und diese je nach fachlicher Erfordernis eigenständig zu vertiefen.
- Sozialkompetenz:
 - Gemeinsames Erarbeiten ingenieurtechnischer Fragestellungen in einer Gruppe mit anderen Studierenden.

Voraussetzungen für die Vergabe von Creditpoints

Regelmäßige Teilnahme und bestandene Studienleistung

Literatur

- Barth, C.; Rustler, W.: Finite Elemente in der Baustatik-Praxis. Bauwerk Verlag
- Hartmann, F.; Katz, C.: Statik mit finiten Elementen. Springer

<u>Unterrichtsmaterial und -hi</u>lfsmittel

Skript mit Beispielen, FEM-Übungen, Nutzung zweier kommerzieller FEM-Programme